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In this document, we present supplementary material for our main paper. The implemen-
tation details are provided in Section A and the experimental details are provided in Section
B. In Section C, we compare the performance of line-assisted visual localization using 3D
LS maps generated by our method versus those generated by LIMAP [3].

A Implementation Details

A.1 Reprojection Score and Reprojection Test
In our approach, we conduct reprojection tests across various modules to improve geometric
consistency across multiple views. The reprojection test utilizes a reprojection score. Let L,
l, and π(L) represent a 3D LS, a 2D LS, and the 2D LS projection of L onto the image of l,
respectively. The reprojection score is calculated as follows,

sre(l,π(L)) = min
sr∈Sre

(sr ·1sr≥0.5), (1)

where sr represents a normalized score quantifying a specific type of distance r. The set
Sre = {sa2D ,sp2D ,so2D} comprises three normalized scores. These normalized scores respec-
tively measure the angle a2D, the endpoint perpendicular distance p2D, and the overlap ratio
o2D. Specifically, the angle a2D is the angle between l and π(L). The endpoint perpendicular
distance p2D is defined as the maximum perpendicular distance from the endpoints of l to
the 2D infinite line formed by π(L). To determine the overlap ratio o2D, π(L) is orthogo-
nally projected onto l. The endpoints of this projection are clipped if they extend beyond
l, resulting in a 2D LS Π(π(L)). The ratio o2D is then calculated as the length of Π(π(L))
divided by the length of l, i.e., o2D = |Π(π(L))|/|l|. Both sa2D and sp2D are calculated using
the formula sr = e−(r/τr)

2
, where τr is a scaling factor for the distance r. The scaling factors

are set as τa2D = 5 degrees, τp2D = 2 pixels. The so2D is set to 1 if o2D > 0; otherwise, it is
set to 0. If the reprojection score exceeds 0, it indicates that the reprojection test is passed.
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A.2 Proximity Score
Let L1 and L2 denote two 3D LSs, the proximity score p(L1,L2) is calculated by combin-
ing the 2D proximity score p2D(L1,L2) with the 3D proximity score p3D(L1,L2), and is
expressed as follows,

p2D(L1,L2) = min
sr∈S2D

(sr ·1sr≥0.5) (2)

p3D(L1,L2) = min
sr∈S3D

(sr ·1sr≥0.5) (3)

p(L1,L2) = min(p2D(L1,L2), p3D(L1,L2)) = min
sr∈S

(sr ·1sr≥0.5) (4)

S = S2D ∪ S3D (5)

where sr represents a normalized score quantifying a specific type of distance r. As discussed
in Section 1 of our main paper, each line track is a set of 2D LSs in images, corresponding
to certain parts of the same 3D LS entity. We assume T1 and T2 are the line tracks corre-
sponding to L1 and L2, respectively. In particular, if L1 and L2 are two 3D LS hypotheses,
T1 and T2 are defined as their respective source 2D LSs. Let T2 \ T1 represent the set of
elements that remain after removing the elements of T1 from set T2. Similarly, let T1 \ T2
represent the set of elements that remain after removing the elements of T2 from set T1. To
calculate the 2D proximity score, for each element (2D LS) in the set T2 \T1, we calculate
the reprojection scores of L1, and similarly for each element (2D LS) in the set T1 \T2, we
calculate the reprojection scores of L2. These reprojection scores are defined by Eq. (1). The
2D proximity score, p2D(L1,L2), is determined by the minimum of all these reprojection
scores. To maintain a consistent format with p3D(L1,L2), we represent p2D(L1,L2) using
the set of normalized scores. The set S2D encompasses all normalized scores derived from
these reprojection calculations. Let m and n be the numbers of elements in the sets T2 \T1
and T1 \T2, respectively. The total number of reprojection scores involved is m+n, and the
total number of normalized scores in S2D is 3m+3n. This is because each reprojection score
involves three normalized scores, namely sa2D , sp2D and so2D , as defined in Eq. (1).

Similar to Sre, as defined in Eq. (1), S3D = {sa3D ,sp3D ,so3D} comprises three normalized
scores that measure the angle a3D, the scale-invariant endpoint perpendicular distance p3D,
and the overlap ratio o3D, respectively. Specifically, the angle a3D is the angle between L1
and L2. Defining p3D as the maximum perpendicular distances between the endpoints of
L1 and L2 to each other’s line will impose a penalty on longer 3D LS. However, these long
3D LSs are important for a clean reconstruction. To address this issue, we unproject L1 and
L2 onto each other’s line to get two 3D LS projections. We calculate p3D as the maximum
perpendicular distances between the endpoints of the 3D LS projections to each other’s 3D
LS projection, similar to the approach used in LIMAP [3]. To obtain scale invariance, we
divide p3D by min(σ1,σ2), where σi = median(σ k

i ), σ k
i = dk

i / f k
i , dk

i is the depth of the
midpoint of two 3D endpoints, back-projected from the 2D endpoints of the kth 2D LS
observation to the corresponding 3D LS Li, and f k

i is the focal length of the kth 2D LS
observation’s image. The overlap ratio o3D is determined by projecting L1 and L2 onto each
other and calculating the maximum length ratio between the projections and the original 3D
LSs. The sa3D and sp3D are calculated using the formula sr = e−(r/τr)

2
, where τr is a scaling

factor for the distance r. The scaling factors are set as τa3D = 5 degrees, τp3D = 1. The so3D is
set to 1 if o3D > 0; otherwise it is set to 0. The final set S, which combines all the normalized
scores, is the union of S2D and S3D, encapsulating the comprehensive scoring framework for
the proximity measurement between L1 and L2.
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A.3 Joint Optimization
To improve 3D line mapping quality, we jointly optimize 3D lines with SfM points and VPs
by minimizing the following energy function [3],

E = ∑
P

EP(P)+∑
L

EL(L)+ ∑
(P,L)

EPL(P,L) (6)

where EP is the squared point reprojection error, EL is the squared line reprojection error,
and can be written as follows,

EL(L) = ∑
k

w2
∠(Lk, lk) · e2

perp(Lk, lk), (7)

w∠(Lk, lk) = exp(α(1− cos(∠(Lk, lk)))), (8)

where lk is the detected 2D LS, Lk is the 2D infinite line projection of the 3D LS L on the
image of lk, and eperp(Lk, lk) is the root of the sum of the squared perpendicular distance from
the endpoints of lk to Lk. α equals 10.0 in our system. The function EPL(P,L) encodes the
perpendicular distance between the associated SfM point and the 3D line, the angle between
the 3D direction of the associated VP and the 3D line, and VP orthogonality regularization.
The associated SfM points of the 3D LS are derived from 2D point-line associations, SfM
point tracks, and line tracks. Similarly, the associated VPs of the 3D LS are derived from 2D
line-VP associations and line tracks.

B Experimental Details

B.1 Datasets
We utilize the Hypersim dataset [5] and the Tanks and Temples dataset [2] for experiments.

For Hypersim dataset [5], we utilize images from the first eight scenes for our experi-
ments, resizing each to a maximum dimension of 800 pixels. The SfM points are derived
using COLMAP [7] with the provided Ground Truth (GT) camera poses. The evaluation
model (GT points) is constructed from GT depth maps and GT poses using the LIMAP
library [3].

For Tanks and Temples dataset [2], we utilize images from the training data for our ex-
periments, excluding the scene Ignatius as it has almost no line structures. The evaluation
model (GT points) is the provided GT point cloud. The SfM points and camera poses are
derived using COLMAP [7]. We align the camera poses with the provided GT point cloud
for accurate evaluation. Since the provided GT point cloud primarily focuses on the main
object, and our method is capable of reconstructing 3D LSs far from the main object, we
take measures to ensure distant 3D LSs do not compromise reconstruction accuracy. Fol-
lowing LIMAP’s recommendations, we compute an axis-aligned bounding box around the
GT points, extend it by 0.1 meters in all three dimensions, and restrict our evaluations to the
lines within this expanded region.

B.2 Details on L3D++ [1] and LIMAP [3]
We compare our method with two state-of-the-art methods: L3D++ [1] and LIMAP [3], uti-
lizing their publicly available source code. For L3D++ [1], we use their default parameters.
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Scene HLoc [6] LIMAP [3] IncreLM

Chess 2.4 / 0.84 / 93.0 2.5 / 0.85 / 92.3 2.5 / 0.83 / 93.2
Fire 2.3 / 0.89 / 88.9 2.1 / 0.84 / 95.5 1.9 / 0.77 / 97.1
Heads 1.1 / 0.75 / 95.9 1.1 / 0.76 / 95.9 1.1 / 0.75 / 94.6
Office 3.1 / 0.91 / 77.0 3.0 / 0.89 / 78.4 3.0 / 0.86 / 80.2
Pumpkin 5.0 / 1.32 / 50.4 4.7 / 1.23 / 52.9 4.5 / 1.18 / 56.0
Redkitchen 4.2 / 1.39 / 58.9 4.1 / 1.39 / 60.2 3.9 / 1.35 / 62.9
Stairs 5.2 / 1.46 / 46.8 3.7 / 1.02 / 71.1 3.7 / 0.97 / 73.3

Avg. 3.3 / 1.08 / 73.0 3.0 / 1.00 / 78.0 2.9 / 0.96 / 79.6

Table 1: Per-scene results of visual localization on 7Scenes [8]. We report the median trans-
lation and rotation error in cm and degrees, along with the percentage of the poses at a 5cm
/ 5deg threshold, presented sequentially.

For LIMAP [3], we employ the Line + Line, Multiple Points, Line + Point, and Line + VP
methods for two-view line triangulation, employ the default greedy strategy for generating
line tracks and conduct joint optimization using SfM points, 3D lines and VPs.

For the sake of fairness, all methods receive identical inputs: detected 2D LSs, VPs, and
top K 2D line matches, where K = 10. These 2D line matches are supplied by the state-of-
the-art line matcher GlueStick [4]. Similar to the evaluation framework used by LIMAP [3],
we evaluate 3D LS with at least four supporting images. All experiments are conducted on a
computer equipped with a 3.4GHz processor.

C Evaluation on Line-assisted Visual Localization
We compare the performance of line-assisted visual localization using 3D LS maps generated
from LIMAP [3] against those produced by our proposed method, IncreLM. Specifically, we
conduct the experimental evaluation using the visual localization framework of LIMAP [3]
on the 7Scenes dataset [8]. The results are presented in Table 1. In addition, we reported
results from the point-based visual localization method, HLoc [6].

As depicted in Table 1, our line-assisted visual localization consistently outperforms
the point-based approach, which demonstrates integrating point and line features signifi-
cantly enhances visual localization accuracy. Furthermore, utilizing our 3D LS maps for
line-assisted visual localization yields superior performance compared to the 3D LS maps
from LIMAP [3]. This demonstrates that our method produces more precise 3D LS maps
and again emphasizes our approach’s advantages.
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