BAI, CUIL, SHEN: INCRELM: INCREMENTAL 3D LINE MAPPING 1

IncreLM: Incremental 3D Line Mapping

Xulong Bai'?2 !Institute of Automation,
baixulong2022@ia.ac.cn Chinese Academy of Sciences,
Hainan Cui*'-23 Beijing, China
hncui@nlpr.ia.ac.cn 2School of Atrtificial Intelligence,
Shuhan Shen*1.2:3 University of Chinese Academy of
shshen@nlpr.ia.ac.cn Sciences, Beijing, China
3 CASIA-SenseTime Research Group,
Beijing, China
Abstract

Given posed images and Structure-from-Motion (SfM) points, we aim to produce 3D
line segments (3D LSs) and line tracks. Traditional methods typically reconstruct a sin-
gle 3D LS corresponding to each 2D line segment (2D LS) independently and in parallel,
later merging all single 3D LSs to produce final 3D LSs and line tracks. However, this
independence may lead to inconsistencies in outlier line matches identified across dif-
ferent single 3D LS reconstructions. To enhance the robustness of outliers, we propose
an incremental 3D line mapping method that sequentially reconstructs each final 3D LS,
using outlier line matches identified from earlier reconstructions to guide later ones. In
our approach, 3D LS hypotheses are generated through two-view line triangulation, uti-
lizing 3D points and vanishing points within a hybrid RANSAC framework. A graph is
then created, with nodes representing the hypotheses and edges linking nodes that share
identical source 2D LSs. Initially, the best 3D LS hypothesis is found based on neighbor-
hood supports and added to an empty 3D line map. We then extend the line track of the
new 3D LS and filter out outlier matches through reprojection. Next, we filter out outlier
nodes generated by outlier matches, locate the next-best 3D LS hypothesis, and integrate
it into the existing map. This iterative process continues until no best 3D LS hypotheses
can be identified from the graph. Finally, the line tracks are merged and a joint optimiza-
tion is performed to improve the map quality. Experiments show that our system exceeds
current state-of-the-art methods in completeness and accuracy and produces longer line
tracks. Code is available at https://github.com/3dv-casia/IncrelM.

1 Introduction

Generally, most 3D reconstruction algorithms [2, 20, 28] use 3D points to represent the scene
structure. However, using 3D points to represent weakly textured areas and slender structures
is difficult and redundant. Hence, the 3D line segments (3D LSs) become popular recently
as they can effectively and concisely represent these scenes in man-made environments.
With the known camera poses, traditional 3D line mapping methods, e.g., L3D++ [11]
and LIMAP [19], reconstruct the single 3D LS corresponding to each 2D line segment (2D
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Figure 1: This figure shows the 3D line mapping results on a sample Hypersim dataset [26].

LS) independently and in parallel, later merging all single 3D LSs to produce final 3D LSs
and line tracks. In this paper, a line track is defined as a set of 2D LSs in images, correspond-
ing to certain parts of the same 3D LS entity. However, this independence may lead to in-
consistencies in outlier line matches identified across different single 3D LS reconstructions,
making current methods incapable of finding real outliers. To improve the scene complete-
ness, traditional methods usually take one-to-many line matches as inputs, where one 2D LS
can match multiple candidate 2D LSs on a neighboring image. As a result, the input line
matches are contaminated by plenty of outliers. In traditional methods [11, 19], handling
numerous outlier matches in parallel is challenging and restricts the system’s robustness.

Inspired by the incremental SfTM method [28], known for producing accurate and robust
reconstruction results, we propose a novel incremental 3D line mapping framework. To im-
prove the scene completeness, our framework also takes one-to-many line matches as inputs.
In contrast to conventional frameworks, our framework sequentially reconstructs each final
3D LS, using outlier line matches identified from earlier reconstructions to guide later ones.
To implement this incremental framework, we first generate 3D LS hypotheses through two-
view line triangulation on matches. However, traditional line triangulation is unstable when
3D LS is near the epipolar plane. To address this degeneracy issue, we propose a robust
two-view line triangulation method leveraging 3D points and vanishing points (VPs) within
a hybrid RANSAC framework [3]. A graph is then created, with nodes representing the hy-
potheses and edges linking nodes that share identical source 2D LSs. Utilizing this graph,
we develop a strength score function for nodes, which encodes geometric supports from
neighboring nodes. Initially, the best 3D LS hypothesis is found with the largest strength
score and added to an empty 3D line map. We then extend the line track of the newly added
3D LS using line matches and filter out outlier matches through reprojection. Next, we fil-
ter out outlier nodes generated by outlier matches, locate the next-best 3D LS hypothesis,
and integrate it into the existing map. This iterative process continues until no best 3D LS
hypotheses can be identified from the graph. During the incremental mapping, the outlier
matches are gradually detected by 3D LS outputs and ignored in the further mapping pro-
cess. This feedback mechanism enhances the system’s robustness to outliers. Finally, we
propose a line track merging module that creates longer line tracks, thereby facilitating the
construction of a more precise map through joint optimization.

In conclusion, our Contributions are as follows: 1) An incremental 3D line mapping
system, which takes one-to-many 2D LS correspondences as inputs and utilizes a feedback
verification mechanism based on 3D LS outputs to iteratively handle outlier matches; 2) A
robust two-view line triangulation algorithm, which leverages 3D points and vanishing points
through a hybrid RANSAC framework; 3) A 3D LS hypotheses graph, which helps to find the
order of incremental line mapping and is dynamically updated through the mapping process;
4) A line track merging module, which produces longer line tracks and contributes accurate
optimization. Fig. 1 shows a sample comparison of the 3D LS mapping results produced by
the state-of-the-art methods. Through this comparison, our method, abbreviated as IncreLM,
reconstructs a more complete 3D LS map.
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Figure 2: Pipeline. Our system begins with feature pre-processing and 3D LS hypotheses
generation. It then incrementally produces 3D LSs and line tracks, one at a time. Finally,
post-processing is conducted to enhance the overall quality of the mapping.

2 Related Work

3D Line Mapping Without Known Camera Poses. As a pioneering work, Weng et al. [34]
presented the closed-form solution of SfM from line correspondences. Quan and Kanade [25]
presented a method for affine SfM from line correspondences. Bartoli and Sturm [1] pre-
sented representations, triangulation, and bundle adjustment for a line-based SfM. Salaiin et
al. [27] estimated the relative scale of two successive bifocal calibrations. Micusik and
Wildenauer [21] decoupled rotation and translation estimation. Zhang and Koch [38] intro-
duced the Cayley representation of spatial lines in a line-based SfM. In addition to StM,
there are many simultaneous localization and mapping (SLAM) methods [4, 7, 12, 16, 17,
30, 32, 35, 36, 37, 39] use line features to improve localization accuracy. The target of the
above methods mainly focuses on accurate calibration and localization. However, our work
aims at producing a complete and accurate 3D LS map, especially in the case of existing too
many outlier matches, so we focus on 3D line mapping with known camera poses.

3D Line Mapping With Known Camera Poses. Given camera poses, Jain et al. [13] pre-
sented a 3D LS reconstruction method without explicit line matches. Hofer et al. [8, 9, 10]
extended Jain’s work by introducing weak epipolar constraints and finally introduced the
Line3D++ package [11], referred to as L3D++ in this paper. Wei et al. [33] presented a
line matching method based on coplanar constraints, and the line mapping is performed by
progressively selecting the representative 3D LSs. However, it does not produce line tracks.
Guo et al. [5] presented a greedy algorithm for line mapping based on the line matching
score. Liu ef al. [19] introduced the library LIMAP, which employed 3D points and van-
ishing points for two-view line triangulation to tackle degenerate issues and conducted joint
optimization on 3D points, 3D LSs, and VPs. Nevertheless, traditional methods [11, 19]
typically handle each 3D LS corresponding to a 2D LS independently, the outliers detected
between two 3D LSs may be inconsistent, making them not robust to outlier matches. In
this paper, we propose a robust 3D line mapping system to produce 3D LSs one by one and
iteratively filter outlier matches during the incremental process.

3 Incremental 3D Line Mapping

Given posed images and SfM points, we first detect 2D LSs and identify their top K matches
in each neighboring image determined by co-visible SfM points. Each image has n, neigh-
boring images, for which we set K = 10 and n, = 20. Then, we associate 2D feature points
with 2D LSs and detect VPs. After that, we generate 3D LS hypotheses and perform incre-
mental 3D line mapping to produce 3D LSs and line tracks one by one. Finally, we merge
line tracks and perform joint optimization of 3D points, 3D LSs, and VPs. We also filter out
outlier tracks to finalize the 3D LSs and line tracks. Our pipeline is illustrated in Fig. 2.


Citation
Citation
{Weng, Huang, and Ahuja} 1992

Citation
Citation
{Quan and Kanade} 1997

Citation
Citation
{Bartoli and Sturm} 2005

Citation
Citation
{Sala{ü}n, Marlet, and Monasse} 2017

Citation
Citation
{Micusik and Wildenauer} 2017

Citation
Citation
{Zhang and Koch} 2014

Citation
Citation
{Gomez-Ojeda, Moreno, Zuniga-No{ë}l, Scaramuzza, and Gonzalez-Jimenez} 2019

Citation
Citation
{He, Zhao, Guo, He, and Yuan} 2018

Citation
Citation
{Hua, Li, Pang, Liu, Xuanyuan, Shu, and Pei} 2023

Citation
Citation
{Li, He, Lin, and Liu} 2020

Citation
Citation
{Lim, Jeon, and Myung} 2022

Citation
Citation
{Shu, Wang, Pagani, and Stricker} 2023

Citation
Citation
{Wang, Di, Wan, and Wang} 2018

Citation
Citation
{Xu, Hao, Yuan, Wang, and Xie} 2023{}

Citation
Citation
{Xu, Wei, Tang, Zhang, Wu, Ma, Wu, and Jin} 2023{}

Citation
Citation
{Yang, Yuan, Gao, Sun, and Zhang} 2023

Citation
Citation
{Zhou, Liu, Zhai, Ai, Ren, Mao, Huang, Meng, and Kaess} 2023

Citation
Citation
{Jain, Kurz, Thorm{ä}hlen, and Seidel} 2010

Citation
Citation
{Hofer, Wendel, and Bischof} 2013

Citation
Citation
{Hofer, Maurer, and Bischof} 2014

Citation
Citation
{Hofer, Maurer, and Bischof} 2015

Citation
Citation
{Hofer, Maurer, and Bischof} 2017

Citation
Citation
{Wei, Wan, Zhang, Liu, Zhang, and Wang} 2022

Citation
Citation
{Guo, Liu, Song, Liu, Zhang, and Cheng} 2022

Citation
Citation
{Liu, Yu, Pautrat, Pollefeys, and Larsson} 2023

Citation
Citation
{Hofer, Maurer, and Bischof} 2017

Citation
Citation
{Liu, Yu, Pautrat, Pollefeys, and Larsson} 2023


4 BAI, CUIL, SHEN: INCRELM: INCREMENTAL 3D LINE MAPPING

e Erbe b

(a) Line-Line (b) Two-Points (c) Point-VP

Figure 3: Two-view line triangulation solvers. Each solver is used to estimate a 3D infinite
line L. (I;,1;) is a 2D LS correspondence. The red 3D points are associated SfM points.
The red 2D points are observations of the SfM points. The green arrow is the 3D direction
of the associated VP of one of the 2D LSs.

3.1 3D Line Segment Hypotheses Generation

Let L! be the 3D LS hypothesis triangulated from a 2D LS correspondence (/;,1;), where
l; and [; are two source 2D LSs. We term it a hypothesis since the 2D LS correspondence
may be incorrect. In practice, as we utilize one-to-many matches, numerous outlier matches
occur, leading to a significant number of outlier 3D LS hypotheses.

The traditional two-view line triangulation method, as utilized in LIMAP [19], employs

four solvers (i.e., Line + Line, Multiple Points, Line + Point, and Line + VP) to generate
multiple 3D LS hypotheses from a 2D LS correspondence. This method then incorporates
all generated 3D LS hypotheses into the reconstruction, which introduces redundancy and a
high incidence of outliers. To address this challenge, we aim to triangulate one single, precise
3D LS hypothesis from a 2D LS correspondence. Additionally, to resolve the degeneracy
issue (when the 3D line is near the epipolar plane [6]) and enhance triangulation accuracy,
we utilize a hybrid RANSAC framework [3]. This approach integrates multiple solvers,
effectively leveraging the associated SfM points and VPs of 2D LSs.
Two-view Line Triangulation. In our specific hybrid RANSAC, the model is defined as
the 3D infinite line L, and we have three kinds of data: 2D LS correspondence (I;,1;),
3D points set P which contains the associated SfM points of the 2D LSs, and vanishing
points set VP which contains the associated VPs of 2D LSs. There are three solvers: the
Line-Line solver [6], along with two solvers we propose: Two-Points and Point-VP. For the
Line-Line solver, we take the intersection of the back-projected plane of /; and /; as the 3D
infinite line L;,r, as illustrated in Fig. 3a. This solver is similar to the Line + Line solver
presented in LIMAP [19]. For the Two-Points solver, we employ two 3D points to determine
Liny, as illustrated in Fig. 3b. For the Point-VP solver, we employ a 3D point and a 3D
direction of an associated VP to determine L;,r, as illustrated in Fig. 3c. The classical Line-
Line solver is intrinsically unstable in the degenerate case, while the two proposed solvers
are not affected. In contrast to the Multiple Points, Line + Point, and Line + VP solvers
presented in LIMAP [19], our proposed Two-Points and Point-VP solvers employ minimal
data to estimate a 3D infinite line, which is more compatible with the RANSAC scheme.

Given the estimated model L;,¢, we first verify whether the 2D LS correspondence (/;,
[;) is an inlier. To this end, the endpoints of /; and /; are projected to L;, to produce L; and
L;, respectively. If L; and L; have no overlap (i.e., /; and /; do not share a common view
area) or if L;, fails the reprojection test for /; and /;, then (/;, I;) is deemed an outlier and
Liny is discarded. To identify the inliers in P, we first compute the perpendicular distance ¢
from a 3D point p € P to L;,r. Then, to obtain scale invariance, we compute a scale factor
o = median(oy), where oy = di/ fi, and dy is the depth of p in p’s observed image and fj is
the focal length of this observed image, respectively. This scale factor encodes how far the
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3D point can move in 3D before reaching 1-pixel error in the image. If the perpendicular
distance ¢ is lower than o, the 3D point p is considered as an inlier. The inliers in VP are
those vanishing points that form an angle of less than 5 degrees with L;, .

The Line-Line solver produces a unique model because there is only one 2D LS corre-
spondence data. Therefore, we initialize the hybrid RANSAC with the model estimated by
the Line-Line solver and will not use the Line-Line solver again. In each RANSAC iteration,
following the standard hybrid RANSAC framework [3], we estimate the model by selecting
one of the Two-Points and Point-VP solvers that has not been used often previously. Then,
the model is verified by /; and /; and scored with the inlier count overall on P and VP. The
best model will be updated if the new inlier count surpasses the number of inliers correspond-
ing to the best model in the last iteration. Finally, the RANSAC stops when the Two-Points
solver is chosen K times or the Point-VP solver is chosen K, times, where

_ log(1—-P) K — log(1—P)

= = 1
! log(l—SI%)’ 2 log(1—¢gpe,p)’ M

the €, and ¢,, are the estimated inlier ratio in P and VP, respectively. The probability
P is set to 0.99. The final 3D LS hypothesis L! is the union of the L; and L; of the best
Li,y model. Consequently, after executing the Hypotheses Generation module, each 2D LS
correspondence will have only one precise 3D LS hypothesis if any.

3.2 Incremental Mapping

If (I;,1;) is an inlier match and the two-view line triangulation is accurate, L{ will be an
inlier hypothesis. To evalute L{ , we collect hypotheses {L;""} triangulated from /; and /;’s all

matched 2D LSs {/,, }, as well as hypotheses {LTj } triangulated from /; and /;’s all matched

2D LSs {l, }, to establish the set H = {L{"} U{LT" AL LGy IE L/ isan inlier hypothesis,
there should be many other inlier hypotheses in H in the spatial vicinity of L/, because all

inlier hypotheses whose source 2D LS is /; or /; should be located in a similar 3D position.
If L/ is an outlier hypothesis (usually because (I;,/;) is an outlier match), it is unlikely that
there exist hypotheses in H close to L{ . Intuitively, the more hypotheses in ‘H are close to L{ ,
the more geometric supports L! receive, and the more likely L! is to be an inlier hypothesis.
However, outlier hypotheses in H may provide incorrect geometric support, degenerating the
evaluation for L{ . To address this issue, we develop an incremental framework to iteratively
filter out outlier hypotheses and extract the current best hypothesis as the 3D LS output.
Specifically, we introduce an undirected weighted graph G = (V,€) to encode all hy-
potheses and connections. The nodes V denote hypotheses and the initial edges £ connect
two nodes that share a common source 2D LS. Let C denote the set of nodes connected to L.
In each incremental iteration, we will remove some nodes, hence C may be updated. Based
on the way we construct the graph G, the initial C is /. The weights of edges are proximity
scores of two nodes, which is defined as p(L;, L) = ming,es(sy- 15,>0.5) for any two 3D LSs

Ly and L,. The 1 is an indicator function. The s, = e (r/ %) is a normalized score measuring
a distance r with a scaling factor 7,. The S is the set of all normalized scores that measure
the angle between the lines, the perpendicular distance from the endpoints to the other line,
and the overlap ratio of the two LSs. These measurements are computed in both 3D space
and 2D image space. Refer to supplementary material for details about 7, and proximity
scores. If the proximity score equals 0, we delete the corresponding edge. In graph theory,
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Select the Best Node L% $ Extend L3 and Line Track ¢ Filter Useless and Outlier Nodes

Figure 4: A sample iteration of incremental mapping. (a) The node (hypothesis) L, has the
highest strength score. (b) The L, and line track are extended by matching graph under the
reprojection verification. (c) The outlier and useless nodes are filtered from the graph.

the strength of a node is the sum of the weights of the edges attached to it [22]. In our case,
the strength of L] indicates the geometric supports that neighboring nodes provide to L.

Thus, to evaluate L{ , we define its strength score as follows,

(i)=Y p(Li,Le). )

L.eC

Best Hypothesis Selection. In each iteration, we select the node with the highest strength
score as the best node, as it receives the strongest geometric support from neighboring nodes
and is thus most likely to be an inlier. The best node is then added to the existing 3D LS
map, with its track elements being its two source 2D LSs. In the incremental process, we
will filter out specific nodes in the graph. For robustness, if the best node lacks geometric
support from at least two neighboring nodes, the incremental iteration is terminated.

Line Track Extension. Given the selected best node, assumed to be L% (refer to Fig. 4a),
our goal is to extend it by adding more track elements, namely 2D LSs, to its line track. To
accomplish this, we gather all 2D LSs that match /; or /; in a set {/,, } and verify them using
the reprojection of L%. As shown in Fig. 4b, if I3 € {l,,} passes the reprojection test, we add
I3 to the line track of L%. We then project the two endpoints of /3 back onto the 3D infinite
line L;,,y formed by Lf to extend L%. This process is repeated until no additional matched 2D
LSs of the track elements pass the reprojection test.

Hypotheses Filtering. A 2D LS becomes a track element upon corresponding to a recon-
structed 3D LS. After extending the line track, the nodes, where one source 2D LS is a track
element and the other is not, are considered outliers. Since the two source 2D LSs come from
a match but one source 2D LS does not pass the reprojection test in the Line Track Extension
module, the match is an outlier and the node triangulated from this match is also an outlier.
To prevent outlier nodes from providing geometric support to other nodes, i.e. impacting the
best node selection in the next incremental iteration, we filter these outlier nodes from the
graph. As shown in Fig. 4c, we delete node L‘lt because /4 does not pass the reprojection
test in Fig. 4b. The outlier nodes may also belong to the same connected component as L%.
Furthermore, we eliminate nodes whose source 2D LSs are both track elements. Since these
nodes fail to connect nodes where neither source 2D LS is a track element, they are useless
for the next best node selection. In summary, we filter out nodes that have at least one source
2D LS identified as a track element, which is an efficient processing.
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3.3 Post-Processing

Line Track Merging. To improve efficiency and robustness, we only match 2D LSs in
neighboring images. However, such local matching might result in the same 3D LS entity
being observed by multiple tracks but without matches between the respective track ele-
ments. To merge disconnected tracks, we first build a fully connected undirected weighted
graph where the nodes are 3D LSs and the weights of the edges are 3D proximity scores of
two nodes. Then, the edges are arranged in descending order based on their weights. Starting
from the beginning of the edge list, two nodes of the edge are merged using the Union-Find
algorithm [29]. Initially, the 3D LS of each group is the node itself. In each iteration, if
the 3D proximity score of the 3D LS of two groups is greater than 0, we apply principal
component analysis (PCA) to fit a merged 3D LS from the 3D LS of two groups. If all track
elements of two groups pass the reprojection test against the merged 3D LS, we merge the
group of the two nodes. The 3D LS and track of the merged group are updated by the merged
3D LS and track, respectively. The merging is repeated until no more 3D LSs can be merged.
Joint Optimization. Similar to the optimization module in LIMAP [19], we jointly optimize
3D LSs with SfM points and VPs. Specifically, the cost function comprises the summation
of the reprojection error of SfM points and 3D LSs, the perpendicular distance between
the associated SfM point and the 3D line, and the angle between the 3D direction of the
associated VP and the 3D line. The 3D point-line and line-VP associations are based on 2D
point-line and line-VP associations, point tracks, and line tracks.

Outlier Filtering. Finally, the track elements are filtered if they fail the reprojection test.
The new 3D LS is the union of the back-projection of all inlier track elements onto the 3D
infinite line formed by the original 3D LS. To enhance robustness, we only keep the 3D LS
that has at least four visible images.

4 Experiments

We compare our method, IncreLM, with two state-of-the-art methods: L3D++[11] and
LIMAP[19]. Our evaluation utilizes both the synthetic Hypersim dataset [26] and the real
Tanks and Temples dataset [14]. The 2D LSs are produced from the LSD line detector [31] or
the DeepL.SD line detector [23]. The line feature matches are produced from GlueStick [24]
line matcher. For all comparison methods, we use the same top 10 2D line matches.

4.1 Evaluation of 3D Line Mapping

Since there are no ground truth (GT) 3D LSs, we use the GT point cloud as the GT model.
According to the evaluation pipeline of LIMAP [19], we use the following metrics to evaluate
3D LSs and line tracks. 1) Length recall (in meters) at T (Rt): sum of the lengths of the line
portions within 7 mm from the GT model. 2) Inlier percentage at T (Pt): the percentage
of tracks that are within 7 mm from the GT model. 3) Average supports: average number
of image supports and 2D line supports across all line tracks. In addition to these metrics
presented in LIMAP [19], we also evaluate the number of 3D LSs and the running times
without considering feature detection and matching.

We conduct 3D line mapping on the first eight scenes of the Hypersim dataset [26].
The average metrics are reported in Tab. 1. Our method reconstructs the highest number
of 3D LSs, achieves the greatest length recall, and secures the largest number of image
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Line type ~ Method R1 RS R10 P1 P5 P10 #supports  #3Dlines  time [s]
L3D++[11] 310 1674 2221 653 849 897 172/199 5456 2.0
LSD LIMAP[19] 37.1 2087 2825 593 805 862 168/197  692.6 55.5
(31] IncreLM 393 2285 3107 596 798 855 189/23.1 850.6 11.3
L3D++[11] 391 189.9 2491 693 850 89.6 16.1/186 4902 18
DeepLSD | 1\MAP[19] 326 1810 2376 610 792 842 18.8/263 5123 53.6
(23] TncreLM 505 270.8 3584 618 799 855 18.8/21.9 792.6 10.8

Table 1: Line mapping results on the Hypersim dataset [26]. The notation Rt shows the
length recall at T mm and P7 shows the inlier percentage at T mm.

Line type ~ Method RS R10 R50 P5 P10 P50  #supports #3Dlines time [s]
L3D++[11] 4585 10567 35974 439 572 869  93/99 8979.3 30.0

LSD  [IMAP[19] 6017 14063 5007.8 426 556 858 89/99 108743  1304.5
(311 IncreLM 7165 16510 56969 457 577 845 17.5/208 144143 2838

L3D++[11] 4296 9935 34154 449 577 864 9.1/98 7920.8 26.7
DeefLSD LIMAP[19] 532.6 12483 46354 425 534 803 112/140 120505 12000
(23] IncreLM 7845 1820.6 64452 454 570 831 164/18.5 154432  275.1

Table 2: Line mapping results on train split of Tanks and Temples [14]. The notation Rt
shows the length recall at T mm and P7 shows the inlier percentage at T mm.

supports. It also maintains a competitive count of 2D line supports. This demonstrates that
our method can produce more complete 3D LS maps and longer line tracks. Notably, L3D++
[11] achieves the fastest runtime speeds due to its use of GPU parallel computing and because
it omits the processing of 3D points and VPs during the reconstruction phase. However, it
falls short in terms of map completeness. It’s worth mentioning that both our method and
LIMAP [19] incorporate 3D points and VPs to enhance reconstruction quality. Our method
outperforms LIMAP [19] in speed, demonstrating the efficiency of our approach.

The average metrics on the train split of Tanks and Temples are reported in Tab. 2. We re-
move the scene Ignatius as it has almost no line structures. Our method achieves the highest
length recall, average support count, and number of 3D LSs, and operates noticeably faster
than LIMAP [19]. Additionally, on LSD [31] lines, our method achieves the highest inlier
percentage at Smm and 10mm. This further demonstrates the superiority of our approach.
The sample qualitative results on the testing data are displayed in Fig. 5. From this compari-
son, our method produces more complete 3D LS maps and is capable of reconstructing very
dense 3D LSs, which will benefit many downstream computer vision tasks, such as visual
localization [18] and surface reconstruction [15].

4.2 Evaluation of Incremental Mapping

We present the intermediate results of incremental mapping in Fig. 6. As iterations progress,
the inlier percentage decreases while the length recall increases, indicating our method pri-
oritizes the reconstruction of the precise 3D LSs. Consequently, the previous 3D line map
provides valuable feedback for subsequent modeling, as filtered outlier nodes are more likely
to represent true outliers. This mechanism is the cornerstone of our work, enhancing robust-
ness against outlier matches. Leveraging an accurate 3D map to detect outliers and guide
subsequent modeling helps yield more accurate and complete 3D LS maps.
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ai_001_004 (100 images) ai_001_006 (100 images) Barn (410 images) Caterpillar (383 images)

Figure 5: From top to bottom, the line mapping results are produced by L3D++ [11],
LIMAP [19], and our method IncreLM with DeepLSD lines [23], respectively.

100/57.3/100.0 300/142.8/92.7 500/205.5/91.8 837/255.91/82.9

Figure 6: Line mapping results on a sample data of Hypersim [26]. The numbers below
each subgraph display the number of reconstructed 3D LSs, length recall (RS), and inlier
percentage (P5) sequentially. The last subgraph is the final 3D LS map.

Line-Line Two-Points Point-VP  R5 R10 R50 PS5 P10 P50 #supports # 3D lines P,

v 716.9 1653.1 5847.6 44.6 56.1 824 16.7/19.0 143873 100.0%
v 1940 463.0 15503 63.5 739 924 26.6/323 15638 0.2%
v 409.5 971.6 3499.7 545 652 87.8 21.1/247  5420.5 0.6%

v v v 784.5 1820.6 64452 454 57.0 83.1 164/185 154432 100.0%

Table 3: Ablation study of line triangulation solvers on train split of Tanks and Temples [14].
The notation Rt shows the length recall at T mm and P7 shows the inlier percentage at T
mm. P, shows the percentage of used 2D line-line matches.

4.3 Ablation Studies

Line Triangulation. We conducted ablation studies on the solvers employed in hybrid
RANSAC. The results are presented in Tab. 3, where a check mark indicates the use of a
solver. Through this comparison, the individual use of any single solver fails to yield satis-
factory results. The inlier percentage of the results obtained by the SfM point-related solvers,
namely the Two-Points solver and the Point-VP solver, is high, but the length recall is low.
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Method RS R10 R50 P5 P10 P50 #supports #3D lines # supports* # 3D lines*

IncreLM without merging 736.6 1701.1 6035.6 454 569 83.1 16.4/18.6 15150.1 73/82 46360.8
IncreLM with merging 784.5 1820.6 6445.2 454 57.0 83.1 16.4/18.5 15443.2 7.8/8.8 44013.7

Table 4: Ablation study of line track merging on train split of Tanks and Temples [14]. The
notation R7 shows the length recall at T mm and P7 shows the inlier percentage at T mm. The
metrics with “*” are results before joint optimization. Otherwise, they are the final results.

Only 0.2% of line matches can utilize the Two-Points solver, and just 0.6% of line matches
can utilize the Point-VP solver. This suggests that while the SfM points are reliable, they
are too sparse for effective 3D line mapping. In contrast, the Line-Line solver exhibits a
high length recall but a low inlier percentage, suggesting that the robust 3D line mapping
is challenged by the one-to-many line matches inputs, which are heavily contaminated with
outliers. By integrating these solvers into a unified hybrid RANSAC framework, the length
recall of the produced results is improved, and the inlier percentage is also enhanced com-
pared with using the Line-Line solver alone.

Line Track Merging. We conducted experiments with and without the line track merging
module. As illustrated in Tab. 4, incorporating this module can increase the average track
length before performing joint optimization. In the final results, merging operator results
in more 3D LSs. This is because we merged 3D LSs supported by fewer than four im-
ages, which are vulnerable to being filtered out by the Outlier Filtering module, into 3D LSs
supported by more images. The resulting merged 3D LSs are robust against such filtering.
Although the individual Line Track Merging module reduces the number of 3D LSs, when
combined with the Outlier Filtering module, these newly introduced 3D LSs increase the
total number of final 3D LSs. The track length of the final results does not increase more
because the track length of these newly introduced 3D LSs is usually short, thereby sup-
pressing the growth of the average track length. Furthermore, incorporating the line track
merging module significantly improves the length recall in the final results, demonstrating
the effectiveness of our method.

5 Conclusion

In this paper, we introduce an incremental line mapping framework designed to address the
challenge of numerous outliers. Our proposed 3D line segment hypotheses graph serves as
a valuable tool for incremental mapping. Leveraging this graph, the previously established
map provides feedback on subsequent scene modeling by filtering outlier nodes. Extensive
real-world experiments validate the effectiveness and accuracy of our incremental mapping
approach. Moving forward, our future work will focus on enhancing the efficiency of our
framework through parallel programming.
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