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1 More quantitative and qualitative results
In the main manuscript, due to space constraints, we only show quantitative results com-
paring our method with DL-based methods on the full-resolution WorldView-2 dataset. In
this section, we present in Tab. 1 the quantitative results of our method compared to all
other competing methods on the full-resolution Gaofen-2, WorldView-2, and Worldview-
3 datasets. Additionally, in the main manuscript, we only provide qualitative results on
Worldview-2. To further demonstrate the effectiveness of our method, we show visual re-
sults on the Gaofen-2 and WorldView-3 datasets in Fig. 1 and Fig. 2, respectively. From the
results, it can be seen that our method produces visually pleasing outcomes.

2 Dataset Details
In this section, we introduce three satellite datasets used in the experimental section of the
main manuscript, i.e., WorldView-2, WorldView-3, and GaoFen-2. The remote sensing im-
ages we use are collected by different satellite sensors, with the resolution of the captured
PAN images being four times that of the corresponding LR-MS images. Due to the large
size of remote sensing images, it is difficult to feed them into neural networks. Therefore,
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Figure 1: Visual comparison and absolute errors of our method versus other representative
pan-sharpening methods on the GaoFen-2 dataset.
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Figure 2: Visual comparison and absolute errors of our method versus other representative
pan-sharpening methods on the WorldView-3 dataset.

Methods GaoFen-2 WorldView-2 WorldView-3
Dλ ↓ Ds ↓ QNR↑ Dλ ↓ Ds ↓ QNR↑ Dλ ↓ Ds ↓ QNR↑

SFIM 0.0687 0.0624 0.8752 0.0737 0.0899 0.8439 0.0094 0.1061 0.8854
BICUBIC 0.0660 0.2144 0.7340 0.0628 0.1411 0.8058 0.0211 0.0626 0.9278
Wavelet 0.1310 0.0807 0.8041 0.0968 0.1020 0.8126 0.0552 0.133 0.8193

IHS 0.0782 0.0904 0.8405 0.0874 0.1187 0.8053 0.0176 0.1223 0.8621

SRPPNN 0.0663 0.2054 0.7413 0.0640 0.0858 0.8567 0.0396 0.0448 0.9176
MSDCNN 0.0715 0.2092 0.8630 0.0639 0.0783 0.8637 0.0242 0.0476 0.9292

GPPNN 0.0719 0.0734 0.7397 0.0670 0.0785 0.8607 0.0196 0.0484 0.9329
MutInf 0.0755 0.1762 0.7612 0.0638 0.0794 0.8644 0.0164 0.0420 0.9423
HSIT 0.0727 0.1637 0.7764 0.0640 0.0862 0.8609 0.0326 0.0453 0.9238

Panformer 0.0647 0.1996 0.7481 0.0627 0.0825 0.8609 0.0210 0.0444 0.9355
MSDDN 0.0693 0.1580 0.7840 0.0639 0.0758 0.8659 0.0170 0.0381 0.9457
MDCUN 0.0667 0.2334 0.7149 0.0661 0.0834 0.8568 0.0413 0.0345 0.9258
LGTEUN 0.0749 0.1468 0.7895 0.0645 0.0771 0.8644 0.0173 0.0328 0.9504

WINet 0.0681 0.2172 0.7283 0.0644 0.0761 0.8627 0.0190 0.0395 0.9422

Ours 0.0642 0.0605 0.8602 0.0622 0.0757 0.8652 0.0101 0.0280 0.9515

Table 1: Quantitative results of all competing methods on three full resolution datasets.The
best and second best values are highlighted in bold and underline, respectively.
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Datasets GaoFen-2 WorldView-2 WorldView-3

bit depth 11 11 11
Training set 1036 1012 910

Test set 136 145 144
LR-MS image size 32×32×4 32×32×4 32×32×4

PAN image size 128×128×1 128×128×1 128×128×1
HR-MS image size 128×128×4 128×128×4 128×128×4

Table 2: Detailed information of the datasets used.

Stage Number Params(M) Flops(G) PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓
K = 1 0.1417 0.9137 42.6860 0.9785 0.8415 0.0207 0.9243
K = 2 0.1712 1.8275 42.7301 0.9787 0.8427 0.0206 0.9213
K = 3 0.4249 2.7412 42.6785 0.9788 0.8426 0.0206 0.9191
K = 4 0.5665 3.6549 42.6747 0.9781 0.8420 0.0208 0.9267

Table 3: Quantitative results of our method with different number of stages on WorldView-2.

we crop the LR-MS images and PAN images into small patches to form training and testing
sets, similar to most pan-sharpening works [1, 2, 3]. The information about the testing and
training sets for these three datasets is shown in Tab. 2.

3 Limitations

While the proposed method brings promising results, there are still some notable issues that
require further research. Firstly, due to the specificity of different satellites, our method may
not fully guarantee superior performance in all full-resolution scenarios, as shown in Tab. 1.
Therefore, our method shows potential for performance improvement in full-resolution pan-
sharpening scenarios. Additionally, our model involves a large number of floating-point
operations. As shown in Tab. 3, the computational complexity of the model increases lin-
early with the number of stages. Therefore, further exploration of potential acceleration op-
timization strategies to improve model efficiency will make our proposed SSPEDUN more
competitive.

4 Impact Statement

Our proposed SSPEDUN aims to advance the field of computer vision by providing an ef-
ficient and feasible approach for image fusion or restoration tasks, such as super-resolution,
hyperspectral image reconstruction, and spectral compressed imaging. It has the potential
to impact various industries, including agricultural development, environmental monitoring,
and military applications, by enhancing the accuracy and efficiency of generated images.
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