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Abstract

Pan-sharpening aims to perform super-resolution processing on low-resolution mul-
tispectral (LR-MS) images guided by high-resolution panchromatic (PAN) images. Ex-
isting pan-sharpening methods have two main issues. Firstly, deep learning-based meth-
ods are mostly designed based on black-box principles, lacking sufficient interpretabil-
ity. Secondly, model-based methods enhance interpretability but do not fully consider
domain-specific prior knowledge, namely complex spatial and spectral relationships,
which limits their performance. To address these challenges, we propose a novel deep
unfolding network with spatial-spectral perception enhanced for pan-sharpening, namely
SSPEDUN. Specifically, we model the pan-sharpening problem as the minimization of a
variational model with spatial reconstruction priors and spectral modulation priors. The
spatial reconstruction prior reconstructs high-quality spatial information based on ob-
served image spatial relationships, while the spectral modulation prior accurately mod-
ulates the spectral relationships between images. Then, we design an efficient iterative
proximal gradient descent algorithm to alternately solve the data subproblem and the
prior subproblem of the model, and then unfold this algorithm into a deep network. In the
deep unfolding network, we introduce a data projection module to address data mapping
during the optimization process and carefully design a Perception Enhancement Module
(PEM) as the prior module to precisely model spatial and spectral relationships. Exten-
sive experiments on three satellite datasets demonstrate the superiority of our method.
The source code is available in our supplementary material.
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1 Introduction
Recent advances in remote sensing technique boosts the demand for high-resolution multi-
spectral (HR-MS) images, which have been widely applied in areas such as environmental
monitoring and agricultural development [24, 26]. However, the physical limitations in ex-
isting satellite systems make it challenging to simultaneously achieve images of both high
spatial and spectral resolutions with equipped sensors [23]. Consequently, pan-sharpening
becomes an alternative solution to fuse high-resolution panchromatic (PAN) images with
their corresponding low-resolution multispectral (LR-MS) images to generate the target HR-
MS images with both high spatial and spectral resolution.

In the past decades, there has been an explosive growth of pan-sharpening solutions, with
a focus on both traditional handcrafted methods and deep learning (DL)-based methods. Tra-
ditional handcrafted methods include Component Substitution (CS), Multi-resolution Anal-
ysis (MRA), and Variational Optimization (VO). However, these methods mostly rely on
manually defined priors and constraints, with limited capability in representing image fea-
tures, thus limiting their performance [12]. Inspired by the recent success of DL models
in visual tasks, various DL-based pan-sharpening methods are proposed that can be divided
into two types, i.e., single-branch-based and dual-branch-based, according to the reconstruc-
tion way of spatial-spectral information. The single-branch-based methods involve directly
concatenating LR-MS images and PAN images, then applying CNN networks to extract
spatial and spectral information to reconstruct HR-MS images [13, 21]. Meanwhile, the
dual-branch-based methods utilize CNN networks to separately extract the spectral informa-
tion from LR-MS images and the spatial information from PAN images, which are fused to
generate HR-MS images [2, 29]. Although these methods demonstrate superiority in spatial-
spectral information reconstruction, they mostly construct network typologies in a black-box
manner, without considering the interpretability of the model.

Therefore, to improve interpretability, model-based pan-sharpening methods are pro-
posed, where deep unfolding networks (DUNs) have been widely applied. However, current
model-based methods still have flaws as they either only model the degradation process of
HR-MS images without considering the complex spatial and spectral relationships between
images (e.g., GPPNN [18]), or only consider a macroscopic perspective without detailed
analysis from a spatial or spectral reconstruction viewpoint, leading to poor performance
(e.g., MMNet [19]). In conclusion, although existing DUNs enhance the interpretability
of pan-sharpening tasks, they neither fully consider domain-specific priors, i.e., complex
spatial and spectral relationships, nor conduct cross-modal interactions, and thus limit their
performances.

Motivation. We conduct a detailed analysis of the spatial and spectral relationships
between PAN images, LR-MS images, and HR-MS (GT) images. As illustrated in Fig. 1, we
find that the spatial information in PAN images is highly similar to that in HR-MS images,
making it possible to restore the spatial details of HR-MS images by only extracting spatial
information from PAN images. Additionally, the spectral trends of LR-MS images do not
correspond to the bands in their corresponding HR-MS images, indicating that it is necessary
to modulate the spectral information of LR-MS image with the spectral information from the
PAN image to reconstruct the spectral information of their target HR-MS image.

In this paper, we propose a novel deep unfolding network with spatial-spectral percep-
tion enhanced for pan-sharpening, namely SSPEDUN. Unlike previous DUNs [10, 18, 19],
our SSPEDUN deeply integrates domain-specific priors. Specifically, we model the degra-
dation process of HR-MS images as a variational model optimization problem with spatial
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(a) HR-MS vs. PAN (b) HR-MS vs. LR-MS (c) HR-MS channels vs. LR-MS channels

Figure 1: (a) Comparison of pixel distributions between HR-MS images and PAN images.
(b) Comparison of pixel distributions between HR-MS images and LR-MS images. (c) Com-
parison of pixel distributions between HR-MS images and LR-MS images for all channels.

reconstruction prior and spectral modulation prior. The spatial reconstruction prior models
the spatial correlation between the target HR-MS image and the input PAN image based
on their spatial information relationship (as shown in Fig. 1 (a)). The spectral modulation
prior modulates the spectral mapping relationship between the target HR-MS image, the in-
put PAN and LR-MS images from the spectral perspective, aiming to achieve better spectral
reconstruction results. Then, we design an efficient iterative proximal gradient descent al-
gorithm to alternately solve the data subproblem and prior subproblem of the model. We
unfold the proposed algorithm into the deep unfolding network, i.e., SSPEDUN, where each
stage corresponds to an iteration. In the proposed SSPEDUN, we design a data projection
module to realize the linear projection of inputs in each stage. Additionally, we design a
Perception Enhancement Module (PEM) as the prior module. Unlike previous rudimentary
prior modules, our PEM, based on two specific priors we propose, is capable of extracting
high-quality spatial information of PAN images in the spatial domain and finely modulating
the spectral relationships in the inputs in the frequency domain.

The main contributions of our work are summarized as follows:

• We model the pan-sharpening problem as the minimization of a variational model and
introduce the spatial reconstruction prior and the spectral modulation prior based on
practical analysis. In this way, we enhance the spatial and spectral quality of recon-
structed HR-MS images.

• We devise a novel interpretable deep unfolding network with spatial-spectral percep-
tion enhanced, namely SSPEDUN. Within this framework, we tailor the PEM which
simultaneously reconstructs high-quality spatial information and modulates the spec-
trum, improving the performance of pan-sharpening.

• Extensive experiments on various satellite datasets demonstrate that our method out-
performs other state-of-the-art methods qualitatively and quantitatively.

2 Related Work

2.1 Pan-sharpening Methods
Traditional pan-sharpening methods can be classified into Component Substitution (CS),
Multi-resolution Analysis (MRA), and Variational Optimization (VO) methods. CS meth-
ods [3, 5, 6] extract specific components from LR-MS and PAN images using reversible
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projection algorithms, and then replace or merge these components to restore the spectrally
enhanced image. MRA methods [11, 14] inject spatial information extracted from PAN im-
ages into LR-MS images using multi-resolution decomposition techniques to enhance spa-
tial textures. VO methods [15, 17] reformulate pan-sharpening as a variational optimization
problem. However, due to their limited representation capacity, the spectral sharpening re-
sults of traditional methods often exhibit adverse spatial or spectral distortions. Recently,
DL-based methods have been employed for pan-sharpening, significantly improving per-
formance compared to traditional methods. According to the spatial-spectral information
reconstruction approach, DL-based methods can be divided into two categories, i.e., single-
branch-based and dual-branch-based. Single-branch-based methods directly concatenates
LR-MS images and PAN images, then uses CNN-based networks to extract spatial and spec-
tral information to reconstruct HR-MS images, e.g., PNN [13] and PANNet [21]. Another
type utilizes CNN-based networks to separately extract spectral information from LR-MS
images and spatial information from PAN images, finally fusing them to generate HR-MS
images, such as SRPPNN [2], CTINN [28] and MutInf [29]. Although DL-based meth-
ods have made progress in spatial-spectral information reconstruction, they construct deep
learning networks in a black-box manner, lacking interpretability.

2.2 Deep Unfolding Network
In recent years, many model-based methods have been proposed to enhance the interpretabil-
ity of networks, with deep unfolding networks (DUNs) widely applied in model-based meth-
ods. Generally, DUNs unfold their optimization algorithms for the problem at hand and pa-
rameterize unfolding models for end-to-end training [20]. In pan-sharpening, GPPNN [18]
applies DUNs for the first time. It models pan-sharpening as the spectral degradation pro-
cess of LR-MS images and the spatial degradation process of PAN images, introducing
two image priors to capture spatial and spectral information of PAN and LR-MS images.
However, it only models the degradation process and does not consider the complex spatial
and spectral relationships between images, thus limiting its performance. MMNet [19] and
LGTEUN [10] introduce local priors and global priors during modeling to capture global
and local information. However, they only consider the macroscopic perspective and do not
conduct a detailed analysis from the spatial or spectral reconstruction viewpoint, resulting in
poor performance.

3 Method

3.1 Model Formulation
In this paper, we model the pan-sharpening problem as a super-resolution problem of the
LR-MS image guided by the PAN image. The degradation process of the HR-MS image
H ∈ RH×W×C can be expressed as:

L = DBH +NL, P = SH +NP (1)

where D and B represent the blur and downsampling operators respectively; S denotes the
spectral response function of the panchromatic imaging sensor, and NL and NP represent the
noise introduced during the capture process of the LR-MS image L ∈ Rh×w×C and the PAN
image P ∈ RH×W×1, respectively. Based on this degradation model, we introduce the image
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Figure 2: Illustration of our method. (a) Overall architecture of SSPEDUN. (b) Data Projec-
tion module D. (c) Structure and components of the prior module P .

space reconstruction prior ΩP(P) and the spectral modulation prior ΩL(H,P) according to
our analysis in Section 1 to reconstruct high-quality spatial and spectral information. Then,
the H can be obtained by solving the following minimization problem,

Ĥ = argmin
H

1
2
||L−DBH||2 + 1

2
||P−SH||2 +λ1ΩP(P)+λ2ΩL(H,P), (2)

where 1
2 ||L−DBH||2 and 1

2 ||P−SH||2 are data fidelity terms and λ1 and λ2 are hyperparam-
eters balancing their importance. We solve Eq. 2 as an iterative convergence problem using
the proximal gradient descent (PGD) algorithm, i.e.,

Ĥk = argmin
H

1
2
||H − (Ĥk−1 −σ∇ f (Ĥk−1)||2 +λ1ΩP(P)+λ2ΩL(H,P), (3)

where Ĥk represents the output of the k-th iteration, σ denotes the step size for updates, and
∇ f (Ĥk−1) can be expressed in the following form,

∇ f (Ĥk−1) = (DB)T (DBĤk−1 −L)+(SĤk−1 −P)ST . (4)

We divide Eq. 3 into a data sub-problem (Eq. 5) and a prior sub-problem (Eq. 6), and solve
them alternately,

Ĥk− 1
2
= Ĥk−1 −σ∇ f (Ĥk−1), (5)

Ĥk = proxΩL(Ĥk− 1
2
)+ proxΩP(P), (6)

where proxΩL and proxΩP represent the proximal operators of the priors ΩL(.) and ΩP(.),
respectively. Next, we use this iterative process to design our deep unfolding network, where
we generalize the two iterative steps, Eq. 5 and Eq. 6, into network modules, namely the data
projection module D and the prior module P .

3.2 Deep Unfolding Network
Our deep unfolding network SSPEDUN is illustrated in Fig. 2 (a). First, it performs four-
fold upsampling on the given LR-MS image L ∈ Rh×w×C to obtain the initialized input
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Ĥ0 ∈ RH×W×C. Subsequently, the Ĥ0 and the given PAN image P ∈ RH×W×1 are jointly
fed to the network, where they undergo K stages of processing to reconstruct the required
spatial and spectral information. These stages are intentionally designed to correspond to
the K iterations in the optimization algorithm, where each stage comprises a data projection
module D and a customized prior module P for spatial-spectral reconstruction. Finally, the
reconstructed HR-MS image ĤK ∈ RH×W×C is obtained after K stages.

3.2.1 Data Projection Module D

We design a data projection module D to simulate the linear mapping process in Eq. 5. As
shown in Fig. 2 (b) which details the k-th iteration, the D takes the output of the k− 1-th
stage Ĥk−1, L, and P as inputs. The processing flow of D is as follows,

Ĥk− 1
2
= Ĥk−1 −σ(DConv↑(DConv↓(Ĥk−1)−L)+PConv↑(PConv↓(Ĥk−1)−P)) (7)

where DConv↑ and DConv↓ respectively represent upsampling and downsampling achieved
by 3×3 depth convolutions. Similarly, PConv↓ and PConv↑ are implemented by point con-
volutions with the purpose of reducing the number of channels from C to 1 and increasing
the number of channels from 1 to C.

3.2.2 Prior Module P

When designing image denoising priors, previous deep unfolding network-based methods
directly extract features from the input PAN image and LR-MS image, which neglect crucial
domain knowledge and thus failed to comprehensively account for modal characteristics of
LR-MS and PAN images as well as their complex spatial and spectral relationships. To
address this issue, we introduce the spatial reconstruction prior and the spectral modulation
prior when designing the prior module P to reconstruct the spatial and spectral properties of
HR-MS images.

As shown in Fig. 2 (c), the P takes the PAN image P and the output Ĥk− 1
2

of D as in-

puts. Specifically, it first utilizes embedding layers to map Ĥk− 1
2

and P to features X0 and P0

respectively. Then, X0 and P0 are embedded into deep feature Xd through an encoder, bot-
tleneck, and decoder. The encoder and decoder each contain two PEMs and a resized deep
convolution module, and the bottleneck has a single PEM. Each PEM consists of two layer
normalizations (LNs), a Perception Enhancement Block (PEB), and a feed-forward network
composed of convolutional layers. Specifically, the PEB consists of a Spatial Reconstruc-
tion Block (SpaRB), a Spectral Modulation Block (SpeMB), and an Adaptive Fusion Block
(AFB), as shown in Fig. 2 (c). SpaRB utilizes a customized self-attention operation based on
local windowing in the spatial domain to extract high-quality spatial details, while SpeMB
refines modulated spectral information using element-wise multiplication in the frequency
domain. Then, the outputs of the two blocks are concatenated and inputted into AFB for
adaptive fusion. After a series of processing steps, Xd is finally mapped to R by a convolu-
tional layer. The output Ĥk is obtained by adding Ĥk− 1

2
and the reshaped R. Next, we will

provide a detailed introduction to SpaRB, SpeMB and AFB.
Spatial Reconstruction Block. Considering the spatial reconstruction prior proposed

in Section 3.1, we design the SpaRB, as illustrated in Fig. 2 (c). It takes Pin ∈ RH×W×C

as the input. It first divides Pin into non-overlapping windows of size M ×M, which are
then reshaped into HW

M2 ×M2 × C
2 . Subsequently, SpaRB generates query Pq, key Pk, and
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value Pv through linear projection, and splits them into h heads along the channel dimension:
Pq = [P1

q ,P
2
q , · · · ,Ph

q ], Pk = [P1
k ,P

2
k , · · · ,Ph

k ], and Pv = [P1
v ,P

2
v , · · · ,Ph

v ] where the dimension of
each head is dh = C

2h . Fig. 2 (c) only shows the scenario where h = 1 for simplicity. The
computation of each local self-attention Atti proceeds as,

Atti = so f tmax(
Pi

q(P
i
k)

T

√
dh

+Posi)Pi
v, i = 1,2, · · · ,h, (8)

where Posi is a learnable parameter used to embed positional information. Finally, we con-
catenate the heads along the channel dimension and merge the windows to obtain the output
Xspa.

Spectral Modulation Block. Based on the spectral modulation prior, we design the
SpeMB. As shown in Fig. 2 (c), it takes Xin ∈ RH×W×C as input, which first passes through
a LN. Then, it utilizes three 3×3 depth convolutions to generate feature embeddings Xq, Xk,
and Xv. To better modulate the relationship between spectra, we transform Xq and Xk into the
frequency domain through the Discrete Fourier Transform (DFT). Additionally, according to
the convolution theorem, the convolution of two signals in the spatial domain is equivalent
to their element-wise multiplication in the frequency domain. Therefore, we can obtain the
weight matrices Xq and Xk in the frequency domain through element-wise multiplication
with low computational cost, namely,

W = F(Xq)⊙F(Xk), Xatt = LN(F−1(W ))⊙Xv, (9)

where F(.) represents the DFT, F−1(.) represents the Inverse DFT (IDFT), and ⊙ denotes
element-wise multiplication. Then, we obtain refined modulation of the reconstructed spec-
tral information Xspe through residual connections.

Adaptive Fusion Block. We propose the AFB to better integrate spatial and spectral
information. As illustrated in Fig. 2 (c), we first concatenate the outputs of SpaRB and
SpeMB along the channel dimension, i.e., Fin, and compress it into a lower-dimensional
embedding space F

′
in ∈ R2×H×W through a 3× 3 convolutional layer. Then, we extend the

receptive field of the embedding space along the vertical and horizontal directions using 5×1
and 1×5 convolutional layers, allowing AFB to focus on learning complementary features
with fewer costs. Subsequently, we aggregate the embedding spaces from both directions
using element-wise addition to obtain gating controls. Finally, we derive high-quality fusion
features Fout through the gating controls,

F
′′
in =Conv5×1(F

′
in)+Conv1×5(F

′
in), Fout = sigmoid(F

′′
in)⊙Fin +Fin. (10)

4 Experiments

4.1 Datasets and Evaluation Metrics
We conduct extensive experiments on three datasets from the satellites GaoFen-2, WorldView-
2, and WorldView-3 to validate the effectiveness of the proposed method. Following Wald’s
protocol [16], we employ downsampling operations to generate reduced-resolution datasets
for each satellite sensor. For each dataset, we create training and testing datasets in a ratio of
70% to 30%.

To assess the performance of our model, we select five evaluation metrics, including
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), Q4, spectral angle mapper
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Methods Params(M) Flops(G) GaoFen-2 WorldView-2 WorldView-3
PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓

SFIM [11] − − 34.7715 0.8572 0.4584 0.0657 4.2073 32.6334 0.8728 0.5159 0.0597 3.1919 21.4154 0.5415 0.4525 0.1147 8.8553
BICUBIC [8] − − 35.3075 0.8514 0.3630 0.0597 4.0382 32.2961 0.8238 0.328 0.0552 3.5407 20.5048 0.3572 0.2355 0.1157 9.8285
Wavelet [9] − − 33.9208 0.8197 0.4033 0.0695 4.6445 32.1992 0.8500 0.4577 0.0638 3.3799 21.4464 0.5656 0.5271 0.1503 9.1545

IHS [4] − − 35.2315 0.8837 0.5217 0.0661 3.9912 32.8250 0.8775 0.5305 0.0637 3.0585 22.3452 0.6133 0.5714 0.5714 7.9444

SRPPNN [2] 0.8977 21.1069 45.5621 0.9824 0.8927 0.0256 1.2327 42.4197 0.9777 0.8366 0.0214 0.9567 31.5376 0.9474 0.9409 0.0674 2.8496
MSDCNN [22] 0.2390 3.9112 43.9541 0.9768 0.8640 0.0303 1.4720 41.0747 0.9725 0.8148 0.025 1.0915 32.0549 0.9531 0.9473 0.0631 2.6779

GPPNN [18] 0.1198 1.3967 43.5980 0.9764 0.8663 0.0326 1.5218 40.5086 0.9698 0.8009 0.0275 1.206 31.698 0.9508 0.9445 0.0653 2.8112
MutInf [29] 0.1855 2.46 44.8303 0.9800 0.8835 0.0277 1.3394 41.9530 0.9760 0.8259 0.0227 1.0152 31.8294 0.9522 0.9468 0.0636 2.7528

HSIT [1] 42.8274 54.9373 44.2385 0.9717 0.8642 0.0310 1.4743 41.6025 0.9735 0.8232 0.0239 1.0434 31.1346 0.9510 0.9468 0.071 2.965
Panformer [27] 1.5251 2.9426 45.1304 0.9811 0.8859 0.0263 1.2929 41.5788 0.9739 0.8245 0.0237 1.0502 31.1338 0.9437 0.938 0.067 2.9619

MSDDN [7] 0.6701 3.1521 45.7893 0.9836 0.8949 0.025 1.1924 42.1967 0.9768 0.8339 0.0221 0.9766 32.0545 0.9535 0.9483 0.063 2.6826
MDCUN [20] 0.0984 118.2970 45.4785 0.9822 0.8913 0.0255 1.2354 42.3217 0.9773 0.8373 0.0217 0.9618 31.9930 0.9532 0.9481 0.0630 2.7030
LGTEUN [10] 0.2022 1.2845 45.9539 0.9840 0.8990 0.0246 1.1712 42.5427 0.9781 0.8384 0.0211 0.9407 32.0793 0.9536 0.9488 0.0602 2.6629

WINet [25] 2.1736 7.7704 45.9538 0.9842 0.8987 0.0244 1.1676 42.4081 0.9778 0.8371 0.0215 0.9570 32.2596 0.9550 0.9497 0.0618 2.6244

Ours 0.1712 1.8275 46.5204 0.9858 0.9055 0.0229 1.0930 42.7301 0.9787 0.8427 0.0206 0.9213 32.3005 0.9555 0.9505 0.0598 2.6047

Table 1: The experimental results of all competing methods on three benchmark datasets.The
best and second best values are highlighted in bold and underline, respectively.

BICUBIC SFIM Wavelet IHS SRPPNN MSDCNN GPPNN MutInf

HSIT Panformer MSDDN MDCUN LGTEUN WINet Ours GT

BICUBIC SFIM Wavelet IHS SRPPNN MSDCNN GPPNN MutInf HSIT Panformer MSDDN MDCUN LGTEUN WINet Ours GT

Figure 3: Visual comparison and absolute errors of our method versus other representative
pan-sharpening methods on the WorldView-2 dataset.

(SAM), and relative dimensionless global error in synthesis (ERGAS). Additionally, to fur-
ther compare the generalization capability of the model, we employ three non-reference met-
rics to evaluate its performance, including spectral distortion index (Dλ ), spatial distortion
index (Ds), and quality without reference (QNR).

4.2 Implementation Details
During training, our SSPEDUN is supervised by the L1 loss between the output Ĥk and the
GT image. We set the number of stages K to 2. The data projection module D shares pa-
rameters across stages, while the prior module P does not share parameters. In each SpaRB,
we set the size of the local window M to 8 and the number of heads h to 2. We train on
three satellite datasets for 500 epochs using the Adam optimizer with fixed hyperparameters
β1 = 0.9 and β2 = 0.999. The batch size is set to 16. The learning rate is initialized to
1.5×10−3 and decayed by a factor of 0.85 every 100 epochs for effective convergence. All
experiments are conducted using a single NVIDIA RTX A5000 GPU within the PyTorch
framework.

4.3 Comparison with SOTA methods
To validate the effectiveness of our method in the pan-sharpening task, we conduct exten-
sive experiments on benchmark datasets, comparing it with four traditional methods, i.e.,
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Metric SRPPNN MSDCNN GPPNN MutInf HSIT Panformer MSDDN MDCUN LGTEUN WINet Ours

Dλ ↓ 0.0640 0.0639 0.0670 0.0638 0.0640 0.0627 0.0639 0.0661 0.0645 0.0644 0.0622
Ds ↓ 0.0858 0.0783 0.0785 0.0794 0.0862 0.0825 0.0758 0.0834 0.0771 0.0761 0.0757

QNR↑ 0.8567 0.8637 0.8607 0.8644 0.8557 0.8609 0.8659 0.8568 0.8644 0.8627 0.8652

Table 2: Quantitative results at full resolution on the WorldView-2 dataset.

SFIM [11], BICUBIC [8], Wavelet [9], and IHS [4], and ten DL-based methods, includ-
ing SRPPNN [2], MSDCNN [22], GPPNN [18], MutInf [29], HSIT [1], Panformer [27],
MSDDN [7], MDCUN [20], LGTEUN [10], and WINet [25]. More results regarding the
following experiments can be found in the supplementary materials.

Quantitative Comparison. The quantitative comparison results of our method against
the aforementioned competitive methods on the three datasets are presented in Tab. 1 . It
is evident that DL-based methods surpass traditional model-based methods, and our method
outperforms other comparison methods in terms of all evaluation metrics across the three
datasets, demonstrating significant performance improvement. Specifically, on the GaoFen-
2, WorldView-2, and WorldView-3 datasets, our SSPEDUN achieves improvements of 0.5665
dB, 0.1847 dB, and 0.0409 dB in PSNR, respectively, compared to the second-best method.
It is worth noting that our model achieves a favorable balance with fewer parameters and
computational requirements, and it outperforms other methods in terms of performance.

Qualitative Comparison. In Fig. 3, we present the qualitative results using typical sam-
ples from the WorldView-2 dataset. The top two rows of images depict the results of each
method for pan-sharpening, while the bottom row of images illustrates the residual of mean
squared error between the pan-sharpening results and GT images. Compared to other com-
peting methods, our method exhibits smaller spectral and spatial distortions while preserving
reasonable spectral distributions and accurate texture details. This visually pleasing effect
further substantiates the superiority of our method.

Effect on full-resolution scenes. To further evaluate the performance of the model
in full-resolution scenarios, we test our method against DL-based methods on the full-
resolution WorldView-2 dataset. According to the Tab. 2, the proposed method achieves
competitive results in terms of Dλ and Ds, and ranks second in terms of QNR. This indicates
that our method exhibits superior generalization capability in full-resolution scenarios.

4.4 Ablation Study

Effects of the number of stages. We present in Tab. 3 the performance of our model under
different numbers of stages to investigate the influence of stage count on model performance.
As K increases from 1 to 2, the performance of our model reaches its peak. As K continues
to increase, the model’s performance shows a decreasing trend. In this paper, we balance the
performance and computational complexity of our method by setting K = 2.

Influence of the two priors proposed. To investigate the impact of the proposed spa-
tial reconstruction prior and spectral modulation prior, we conduct ablation experiments as
shown in Tab. 4 (I-III). It can be observed that all metrics experience varying degrees of de-
cline when there is no spatial reconstruction prior or spectral modulation prior. When both
priors are modeled simultaneously, optimal model performance can be achieved, demon-
strating the effectiveness of our two proposed priors.
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Stage Number PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓
K = 1 42.6860 0.9785 0.8415 0.0207 0.9243
K = 2 42.7301 0.9787 0.8427 0.0206 0.9213
K = 3 42.6785 0.9788 0.8426 0.0206 0.9191
K = 4 42.6747 0.9781 0.8420 0.0208 0.9267

Table 3: Quantitative results of our method with
different number of stages on WorldView-2.

Config ΩP ΩL PSNR ↑ SSIM ↑ Q4 ↑ SAM ↓ ERGAS ↓

I % % 46.3370 0.9856 0.9056 0.0231 1.1096
II % " 46.4867 0.9858 0.9055 0.0230 1.0998
III " % 46.3982 0.9852 0.9034 0.0233 1.1171

Ours " " 46.5204 0.9858 0.9065 0.0229 1.0930

Table 4: Quantitative results of ablation experi-
ments on the GaoFen-2 datasets.

5 Conclusions

In this paper, we propose a highly interpretable deep unfolding network with precise spa-
tial and spectral priors (SSPEDUN) for pan-sharpening. To fully exploit the potential of the
designed priors in reconstructing high-quality spatial and spectral information, we devise
the PEM capable of extracting high-quality spatial textures from PAN images and precisely
modulating the spectral information of both PAN and LR-MS images to reconstruct pleasing
spectral details. Additionally, we customize a data projection module to resolve the data
mapping during the optimization process. In this way, both the interpretability and represen-
tational capacity of our model are enhanced. Extensive experimental results on three datasets
demonstrate the superiority of the proposed SSPEDUN compared to other methods.
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