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This document provides more results and describes our experimental procedure in detail.
Section 1 provides a detailed analysis of our method: effect of memory replay, adapting
different model layers, and hyper-parameter analysis. Section 2 provides detailed results of
the experiments from the main paper. Section 3 described implementation details including
the hyper-parameter search for all of the methods. Section 4 described benchmarks used in
this paper, including the introduced ones SHIFT-C and CLAD-C.

1 AR-TTA detailed analysis

1.1 Effect Of Replay Memory Size

The necessity to keep a set of samples from source data in memory can be problematic
in memory-limited settings. We verified the possibility of minimizing the size of replay
memory and evaluated our method with different numbers of stored samples. The results in
Figure 1 show that our method is robust to replay memory size. There is no significant differ-
ence in accuracy between memory sizes of 500 and 10000 for both CIFAR10C and CLAD-C
benchmarks. A slight degradation in performance can be seen with only 100 exemplars for
CIFARI10C. Less severe domain shift in CLAD-C allows for a more significant reduction in
the memory size without the performance drop.

© 2024. The copyright of this document resides with its authors.
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Figure 1: The influence of replay memory size on the resulting accuracy on CIFAR10C and
CLAD-C benchmarks.

1.2 Adapted Weights

Table 1 shows the performance related to different configurations of adapted weights with
our proposed method. We check the multiple configurations of adapting the last two layers,
the first two layers, and only BN statistics. The best results are achieved by adapting the
whole model.

Table 1: Classification accuracy (%) for different configurations of adapted weights with our

proposed method AR-TTA.
CIFAR10C (WideResNet28) CLAD-C (ResNet50)
Adapted weights Mean || Adapted weights Mean
block 1 (BN affine only) 61.4 layer 1 (BN affine only) 81.7
block 1, 2 (BN affine only) | 26.3 || layer 1,2 (BN affine only) | 81.5
block 2, 3 (BN affine only) | 73.8 layer 3, 4 (BN affine only) | 81.9
block 3 (BN affine only) 72.8 || layer 4 (BN affine only) 82.1

block 1 17.4 || layer 1 80.4
block 1, 2 13.9 || layer1,2 81.6
block 2, 3 78.4 layer 3, 4 83.3
block 3 77.2 || layer4 82.8
BN affine only 75.1 || BN affine only 81.8
Whole model (Ours) 78.8 Whole model (Ours) 83.7

1.3 Influence Of Beta Distribution Shape For Mixup Augmentation

The beta distribution in mixup augmenta- Table 2: Classification accuracy (%) for
tion is used to sample interpolation parame- CIFAR10C and CLAD-C tasks for different
ter between exemplars. Within our method, configurations of beta distribution parameters
it controls the interpolation between test y and p for sampling interpolation parameter

data samples and exemplars from the replay A ~ Beta(y, p) required for mixup data aug-
memory bank. By shaping this distribution mentation.

we can adjust what are the fractions of re- Yy p | CIFARIOC CLAD-C

play and test data in the augmented sam- i'g 2‘8 ;2'2 2?';

ples. Results are shown in Table 2. The 50 10 782 230

shape of the distribution did not have a sig- 20 8.0 74.8 82.0

nificant impact on the results. The symmet- 80 2.0 (7)7-5 83.8
urs

ric shape of the distribution, common for

. . . 04 04 ‘ 78.8 83.7
mixup augmentation, gives the best results.
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1.4 Additional Component Analysis

Table 3 shows results for different component configurations of our method. It includes the
experiment without the usage of a weight-averaged teacher. We utilized pseudo-labels from
the adapted model itself (configuration A). Additionally, we show the performance of our
method when chosen exemplars for replay memory are not class-balanced.

Table 3: Classification accuracy (%) for CIFAR10C and CLAD-C tasks for different config-
urations of the proposed method.

Method CIFAR10C | CLAD-C
A: Pseudo-labels 75.54007 | 71.310.54
B: A + Weight-avg. teacher 7574007 | 7114053
C: B + Replay memory 7734016 | 69.0+10.66
D: C + Mixup 7854013 | 72.24031
E:B+ Dynamic BN stats 77.340.07 83.810.82
F: E + Replay memory 79.810.03 82.841.00
AR-TTA (Ours) with random memory selection | 77.1.93¢ 83.740.81
AR-TTA (Ours) 78.810.13 | 83.710.64

1.5 Dynamic Batch Norm Statistics Analysis

The v is a scale parameter of the distance 85
between distributions D(¢5,¢T). Tt deter-
mines the magnitude of the calculated val-
ues of B, which is used for linear interpo-
lation between the saved source batch nor-
malization (BN) statistics ¢ and the BN
statistics calculated from the current batch
¢. The higher the value of 7, the higher
the values of 3 tend to be. At the same time,
the higher the 3 values, the more influence B — R
BN statistics from current batch have on 107 100 10!
interpolation and calculation of the finally

used BN statistics. In Figure 2 we show  Figure 2: The relationship between mean clas-
the relationship between y parameter value sification accuracy (%) and the value of pa-

and mean accuracy of our AR-TTA method  rameter y for CIFAR10C and CLAD-C bench-
for CIFAR10-to-CIFAR10C and CLAD-C  marks.

benchmarks. We can see the contradicting

trend between the two benchmarks. This suggests that the discrepancy in the data distri-
bution between the source domain and the estimated distribution for each test data batch is
more prominent in CIFAR10C compared to CLAD-C. This is in agreement with the results
of the BN-1 [11] baseline method. BN-1 discards the BN statistics from the source data. Its
performance was significantly better on CIFAR10C and worse on CLAD-C, compared to the
fixed source model.
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2 Additional Results

We present batch-wise accuracy plots for the CIFAR10C, ImageNet-C, CIFAR10.1, and
SHIFT-C benchmarks in Figures 3, 4, 5, 6, respectively. Moreover, the full results on
CIFAR10C can be found in Table 4.


Citation
Citation
{Schneider, Rusak, Eck, Bringmann, Brendel, and Bethge} 2020


4 SOJKA ET AL.: AR-TTA: A SIMPLE METHOD FOR REAL-WORLD CONTINUAL TTA

\ Source
| '" IS by

50 / &S ! —— EATA
[ —— CoTTA

40 | { — SAR

i i, / —— RMT

N Nl —— AR-TTA (ours)

64280 85710

Accuracy [%]

128570 150000

o
N
=
S
Y]
IS}
IS
N
)
a
o
=
1)
3
=
'
S

Gaussian Noise
Shot Noise
Impulse Noise
Defocus Blur
Glass Blur
Motion Blur
Zoom Blur

Snow

Frost

Fog

Brightness
Contrast

Elastic Transform
Pixelate

Jpeg Compression

Domain

Figure 3: Batch-wise classification accuracy (%) averaged in a window of 400 batches on
CIFAR10C benchmark for the chosen methods continually adapted to the sequences of data.
The major ticks on the x-axis symbolize the beginning of the next sequence and, at the same
time, a different domain. Minor ticks on the x-axis (numbers) indicate the image number.
Best viewed in color.
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Figure 4: Batch-wise classification accuracy (%) averaged in a window of 400 batches on
ImageNet-C benchmark for the chosen methods continually adapted to the sequences of data.
The major ticks on the x-axis symbolize the beginning of the next sequence and, at the same
time, a different domain. Minor ticks on the x-axis (numbers) indicate the image number.
Best viewed in color.
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Figure 5: Batch-wise classification accuracy (%) averaged in a window of 400 batches on
CIFAR10.1 benchmark for the chosen methods continually adapted to the sequences of data.
Best viewed in color.
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Figure 6: Batch-wise classification accuracy (%) averaged in a window of 500 batches on
SHIFT-C benchmark for the chosen methods continually adapted to the sequences of data.
The major ticks on the x-axis symbolize the beginning of the next sequence and, at the same
time, a different domain. Minor ticks on the x-axis (numbers) indicate the image number.
Best viewed in color.
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Table 4: Classification accuracy (%) for the standard CIFAR10C online continual test-time
adaptation task.

. $ § o S =5 2 > & & 35 g
Method ) g s 5 g S £ § & g 5 o 3 go Mean

I “ I<a ) IS B .80 S i~ N &

& -§ 5 % & N 5 S § ]

Source 277 343 271 531 457 652 58.0 749 587 740 90.7 533 734 416 69.7 56.5
BN-1 673 694 59.7 827 604 814 830 781 777 806 873 834 714 753 679 75.0
TENT [15] 679 714 625 832 629 821 838 795 79.7 814 878 843 735 782 716 76.7
EATA [8] 703 749 67.1 830 656 823 840 803 814 822 880 851 747  80.1 738 782
CoTTA [16] 725 764 705 806 666 783 801 758 77.0 77.1 838 773 720 755 722 75.7
SAR [9] 674 696 608 826 614 815 828 781 77.7 805 874 834 715 752 682 75.2
RMT w/o replay [3] 732 775 721 796 698 782 797 769 780 799 830 816 765 804 773 71.6
RMT [3] 748 786 748 855 731 847 861 842 854 872 901 891 822 87.1 832 83.1
AR-TTA (Ours) w/oreplay | 69.5 73.6 633 835 630 825 845 802 804 819 884 838 742 769 745 | 773007
AR-TTA (Ours) 692 748 664 845 678 837 852 814 827 834 880 847 739 786 71.0 | 788:93

3 Implementation Details

The results are averaged between 3 random seeds. Samples from CIFAR10C and
ImageNet-C are shuffled. Considering the sequential nature of data in CLAD-C and
SHIFT-C benchmarks (video sequences), we did not want to shuffle images. Instead, we
trained 3 source models with 3 different seeds and averaged the results between experiments
with different models. We test the method in a continual manner on every benchmark, which
means that the methods continually adapt the models without the reset to the source state in
between the domains.

Implementations of the compared methods were taken from their official code repos-
itories. We use all hyper-parameters and optimizers suggested by the papers or found in
the code. We follow the standard model architectures used in TTA experiments and use
WideResnet28 for CIFAR10C and CIFAR10.1, and ResNet50 for ImageNet-C, CLAD-C,
and SHIFT-C. Moreover, since we use a smaller batch size (BS) of 10 and benchmarks that
have not been used before in TTA, we search for the optimal learning rate (LR) for each
method. We focus on lowering the LR, considering the decreased batch size. Additionally,
we search for the € hyperparameter of EATA to correctly reject samples for adaptation. The
results of the parameter search can be found in Table 5. The details and parameters used for
each method are described below.

TENT [15] We use Adam optimizer with LR = 0.00025 for CIFAR10.1 and LR =
0.00003125 for every other tested dataset. In the original paper, TENT uses LR = 0.001
for all the datasets except ImageNet, but it performed worse with this value in our setup.

CoTTA [16] Adam optimizer with LR = 0.00025 is used for every tested benchmark, ex-
cept ImageNet-C for which LR was equal to 0.00003125. The original implementation set
LR to 0.001, but with an adjusted value, it achieved better results. We follow the suggestions
for other hyperparameter values given by the authors. The restoration probability p is set to
0.01, the smoothing factor of the exponential moving average of teacher weights « is equal
to 0.999, and the confidence threshold for applying augmentations py, is set to 0.92.

EATA [8] We use the SGD optimizer with a momentum of 0.9 and LR of 0.00025
for CIFAR10C, ImageNet-C, and CLAD-C. LR for SHIFT-C is equal to 0.00003125 and
0.001 for CIFAR10.1. The original EATA paper uses an LR value of 0.005/0.00025 for
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CIFAR10C/ImageNet-C, but they used BS = 64. After the search for the optimal € param-
eter value for filtering redundant samples, we set it to 0.05/0.6 for CLAD-C/SHIFT. The
value of € for CIFAR10C and CIFAR10.1/ImageNet-C is equal to 0.4/0.05, as in the original
paper. The entropy constant Ey is set to the standard value of 0.4x InC, where C was the
number of classes, following the original paper and [9]. The trade-off parameter f is equal
to 1, and 2000 samples are used to calculate the fisher importance of model weights as for
the CIFAR10 dataset in the original paper.

SAR [9] SGD optimizer is used with the momentum of 0.9 and LR = 0.001 for both CI-
FARI10C and CIFAR10.1, and LR = 0.00025 for ImageNet-C, CLAD-C, and SHIFT-C. It
almost aligns with the authors’ choice since, in original experiments, they used a learning
rate equal to 0.00025/0.001 for ResNet/Vit models. The parameter Ej is set to 0.4x InC, as
in the paper, similarly to EATA. We follow the authors’ choice of a constant reset threshold
value eg of 0.2, and a moving average factor equal to 0.9. The radius parameter p is set to
the default value of 0.05.

RMT [3] Adam optimizer is used with LR = 0.00025 for CIFAR10C, CLAD-C, and
SHIFT-C. LR is equal to 0.00003125 for CIFAR10.1 and ImageNet-C, all following the
grid search. Following the original implementation, we use temperature T for contrastive
loss set to 0.1 and momentum param ¢ utilized to update the mean teacher equal to 0.999.

AR-TTA (Ours) We use an SGD optimizer with momentum of 0.9. We set LR of 0.00025
for both ImageNet-C and CIFAR10.1, and 0.001 for the rest of the benchmarks. The scale
hyper-parameter 7 is set to 0.1 for CIFAR10.1, CLAD-C, and SHIFT-C. It is equal to 10
for ImageNet-C and CIFAR10C. o value for weighting the B,,,, is equal to 0.2. We set the
initial B,, value to 0.1. The y and p parameters used for beta distribution to sample A for
mixup is equal to the standard value of 0.4. We store 2000 of exemplars from source data for
memory replay.

4 Benchmarks

4.1 CIFAR10C And ImageNet-C Benchmarks Details

CIFAR10C and ImageNet-C are widely used datasets in TTA. They involve training the
source model on train split of clean CIFAR10/ImageNet datasets [2, 7] and test-time adapta-
tion on CIFAR10C/ImageNet-C. CIFAR10C and ImageNet-C consist of images from clean
datasets which were modified by 15 types of corruptions with 5 levels of severity[6]. They
were first used for evaluating the robustness of neural network models and are now widely
utilized for testing the adaptation capabilities of TTA methods. We test the adaptation on
a standard sequence of the highest corruption severity level 5, frequently utilized by previ-
ous approaches [3, 8, 16]. For ImageNet-C we utilize a subset of 5000 samples for each
corruption, based on RobustBench library [1], following [16].

4.2 CIFAR10.1 Benchmark Details

CIFAR10.1 [10] was designed to minimize the distribution shift relative to the original CI-
FAR10 dataset [7]. It contains roughly 2000 test images. The images in CIFAR10.1 are
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Table 5: Mean classification accuracy (%) for CIFAR10C, ImageNet-C, CIFAR10.1, CLAD-
C, and SHIFT-C continual test-time adaptation task for compared state-of-the-art methods
with different learning rates and EATA’s € parameter.

Method learning rate € CIFARIOC | CIFARI10.1 | CLAD-C | SHIFT-C | ImageNet-C
0.001 - 49.3 79.3 71.5 74.3 3.8
CoTTA [16] 0.00025 - 75.7 823 71.8 78.6 10.6
0.00003125 - 74.5 81.8 71.8 76.2 15.3
0.001 - 243 81.2 64.4 63.4 0.6
TENT [15] 0.00025 - 72.3 823 71.0 75.3 3.1
0.00003125 - 76.1 81.4 71.1 82.7 29.3
0.001 - 75.2 81.3 70.6 86.0 11.3
SAR [9] 0.00025 - 75.1 81.3 70.6 86.0 31.5
0.00003125 - 75.0 81.3 70.6 86.0 28.8
0.001 - 83.0 81.1 76.0 93.1 30.2
RMT [3] 0.00025 - 83.1 81.9 75.3 95.9 28.6
0.00003125 - 81.5 83.3 74.5 93.1 30.5
0.001 0.60 - 82.6 70.1 80.4 -
0.001 0.40 76.3 82.9 70.6 80.4
0.001 0.10 - 824 70.6 86.0 -
0.001 0.05 - 824 70.6 86.0 27.3
0.00025 0.60 - 824 70.5 85.6 -
0.00025 0.40 78.2 82.6 70.6 86.1
EATA [8] 0.00025 0.10 - 82.4 70.6 86.0 -
0.00025 0.05 - 82.4 70.7 86.0 31.7
0.00003125 | 0.60 - 82.4 70.6 86.1 -
0.00003125 | 0.40 76.5 824 70.6 86.0
0.00003125 | 0.10 - 824 70.6 86.0 -
0.00003125 | 0.05 - 824 70.6 86.0 31.6

a subset of the Tinylmages dataset [13]. The source model utilized for testing on this bench-
mark was pre-trained on the original CIFAR10 dataset.

4.3 CLAD-C Benchmark Details

CLAD-C [14] is an online classification benchmark for autonomous driving with the goal
of introducing a more realistic testing bed for continual learning. It consists of natural,
temporal correlated, and continuous distribution shifts created by utilizing the data from
SODA10M dataset [5]. The images taken at different locations, times of day, and weather,
are chronologically ordered, inducing distribution shifts in labels and domains.

The classification task was created by cutting out the annotated 2D bounding boxes of
six classes and using them as separate images for classification. Bounding boxes with fewer
than 1024 pixels were discarded. The images are padded by their shortest axis (modify the
aspect ratio to 1:1) and resized to 32x32. For the ResNet50 model, we additionally resize
them to 224x224.

Since it is designed for testing the continual learning setup and the model is originally
supposed to be trained sequentially on the train sequences, we slightly modify the setup and
pre-train the source model on the first train sequence. TTA is continually tested on the 5
remaining ones with a total number of 17092 images.

4.4 SHIFT-C Benchmark Details

The SHIFT-C benchmark is created using the SHIFT dataset [12]. It consists of multiple
types of autonomous driving data from the CARLA Simulator [4]. We used RGB images
from the front view of a car with discrete domain shifts and bounding box annotations. More
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specifically, we download the required data with the script from SHIFT’s website https:
//www.vis.xyz/shift/, using the following command:

python download.py —-view "front" \
——group "[img, det_2d]" \
——split "[train, val]" \

——framerate "images"
——shift "discrete" TARGET_DIR

\

To load the data for experiments, we utilized shift-dev repository: https://github.

com/SysCV/shift—-dev.

We create an image classification task data, following the steps from the CLAD-C[14]
benchmark. Bounding boxes in the dataset are categorized into six classes, and so are the
created images. Example images are displayed in Figure 7. We present a class distribution

in Figure 8.

We distinguish between domains by the course annotations of time of day and weather.
The source model is trained on images from train split, taken in the daytime in clear weather.
The TTA is also tested on data from the train split but from different weather conditions and
times of the day. Details about the size of each domain can be found in Table 6.

Figure 7: Example images sourced from various domains within the SHIFT-C benchmark.

Table 6: The number of samples in each domain in SHIFT-C benchmark

Domain nr | Time of day | Weather | Number of images

Source data clean 57039
1 cloudy 41253
2 daytime overcast 20497
3 rainy 59457
4 foggy 38590
5 clear 29543
6 cloudy 19985
7 dawn/dusk overcast 9901
8 rainy 26677
9 foggy 20258
10 clear 28639
11 cloudy 18068
12 night overcast 9471
13 rainy 32864
14 foggy 25464

Sum 437706
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Figure 8: SHIFT-C benchmark class distribution.
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