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TL;DR

Continual Test-Time Adaptation (TTA) methods

allow models to adapt to changing data distri-

butions without supervision.

Current techniques are often evaluated on

benchmarks that oversimplify real-world sce-

narios.

We evaluate current test-time adaptationmeth-

ods on realistic, continual domain shift image

classification data from autonomous driving.

We observe that they struggle with varying de-

grees of domain shifts, often resulting in perfor-

mance drops below that of the source model.

We propose a method that obtains state-of-

the-art performance on multiple benchmarks

with both artificial distortions and real-life do-

main shifts.
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Figure 1. Continual test-time adaptation methods evaluated

on artificial and natural domain shifts. Our method is the

only one that consistently allows to improve over the naive

strategy of using the (frozen) Source model.

Natural domain shifts

Figure 2. Example images from various domains within the

CLAD-C benchmark.

Figure 3. Example images with different corruptions from

the ImageNet-C dataset.

The most popular setting for test-time adaptation includes using different classes of synthetic corrup-

tions.

In practical applications, the target distribution can easily change in a different manner, perpetually over

time, e.g., due to changing weather, lighting conditions, or traffic intensity.

Hence, we propose to use two benchmarks that consist of data with domain shifts that can occur in

real-world applications - the CLAD-C benchmark [5] and the SHIFT dataset [4].
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Figure 4. Overall method diagram.
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Figure 5. Our batch normalization statistics update scheme.

Results

Table 1. Classification accuracy (%) for all of the tested online continual test-time adaptation tasks. Methods that use

exemplars are in the right section. The red color indicates accuracy lower compared to a source model. The blue color

indicates dataset with artificial domain shifts and green dataset with natural ones.

Method CIFAR10C ImageNet-C CIFAR10.1 CLAD-C SHIFT-C Average

Source 56.5 18.1 88.3 81.3 93.5 67.5

BN-1 75.0 26.9 81.3 71.1 85.1 67.9

TENT [6] 76.7 29.2 82.3 71.5 82.7 68.5

EATA [2] 78.2 31.5 82.9 71.1 85.1 69.8

CoTTA [7] 75.7 15.5 82.3 72.6 77.4 64.7

SAR [3] 75.2 30.8 81.3 71.1 85.1 68.7

RMT w/o replay [1] 77.6 21.7 80.6 75.1 92.2 69.4

RMT [1] 83.1 30.5 83.3 75.3 95.9 73.6

AR-TTA (Ours) w/o replay 77.3±0.07 30.0±0.45 88.2±0.10 83.9±0.30 92.4±0.25 74.4

AR-TTA (Ours) 78.8±0.13 32.0±0.07 88.3±0.05 83.7±0.64 94.8±0.03 75.5

BN-1 significantly improves the result on corrupted images but does not improve the performance over

the Source model on natural domain shifts.

Similarly, the state-of-the-art TTA methods achieve lower accuracy than the Source model on natural

domain shifts.

Ourmethod outperforms state-of-the-art methods and achieves higher accuracy than the Sourcemodel

on both types of benchmarks.

Ablation study

Table 2. Classification accuracy and average mean class accuracy (AMCA) (%) for the CLAD-C continual test-time adaptation

task.

t −−−−−−→
Method T1 T2 T3 T4 T5 Mean AMCA

Source 75.6 85.9 73.3 87.5 66.2 81.3 57.6

BN-1 73.2 69.9 75.0 75.5 59.7 71.1 48.3

TENT [6] 73.4 69.8 76.5 76.1 59.7 71.5 47.6

EATA [2] 73.3 69.9 75.0 75.6 59.7 71.1 48.4

CoTTA [7] 75.2 69.3 80.2 77.0 62.7 72.6 44.8

SAR [3] 73.2 69.9 75.0 75.5 59.7 71.1 48.3

RMT w/o replay [1] 87.1 70.9 86.6 76.9 64.3 75.1 48.4

RMT [1] 83.8 71.3 85.0 77.6 66.4 75.3 48.8

AR-TTA (Ours) w/o replay 76.9 86.7 81.4 87.9 73.5 83.9±0.30 59.6±2.92
AR-TTA (Ours) 77.2 86.7 80.0 89.6 70.7 83.7±0.64 63.1±3.32

Table 3. Classification accuracy (%) for CIFAR10C and CLAD-

C tasks for different configurations of the proposed method.

Method CIFAR10C CLAD-C

A: Weight-avg. teacher 75.7±0.07 71.1±0.53
B: A + Replay memory 77.3±0.16 69.0±0.66
C: B + Mixup 78.5±0.13 72.2±0.31
D: A + Dynamic BN stats 77.3±0.07 83.8±0.82
E: D + Replay memory 79.8±0.03 82.8±1.09
AR-TTA (Ours): E + Mixup 78.8±0.13 83.7±0.64

Table 4. Classification accuracy and average mean class ac-

curacy (AMCA) (%) results for state-of-the-art methods with

simple replay method added.

Method
CIFAR10C CLAD-C

Mean Mean AMCA

Source 56.5 81.3 57.6

TENT [6] 77.3 70.3 49.2

EATA [2] 78.6 71.1 48.4

CoTTA [7] 79.9 72.6 51.0

SAR [3] 75.3 71.1 48.3

AR-TTA (Ours) 78.8 83.7 63.1

Table 5. The wall-clock time (seconds) and memory usage (MB) measured for processing 10,000 images of CIFAR10C on a

single RTX 4080 GPU.

Method Time [s] Memory [MB]

Source 8.0 304

BN-1 8.3 304

TENT [6] 16.3 506

EATA [2] 24.3 505

CoTTA [7] 319.4 1532

SAR [3] 30.8 506

RMT [1] w/o replay 55.5 1576

RMT [1] 163.7 3039

AR-TTA (Ours) w/o replay 66.2 1098

AR-TTA (Ours) 66.6 1098

Effect Of Exemplars. Average mean class accuracy (AMCA) values show that the usage of replay memory

might be crucial for high mean per-class accuracy.

BaselinesWith Simple ReplayMemory. While the proposed method performs slightly worse than CoTTA

with simple replay memory on the CIFAR10C, it performs significantly better on the natural domain shift

dataset. Most importantly, our method is the only one that constantly improves over the source model.

Computational Efficiency While our method does not rank as the most computationally efficient, it

achieves a balance between computational demands and performance. Despite incorporating exemplars,

we maintain a consistent computational budget.
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Figure 6. Batch-wise classification accuracy (%) averaged in a window of 400 batches on CLAD-C benchmark for the chosen

methods continually adapted to the sequence of data, with major ticks on the x-axis symbolizing the beginning of a different

domain and minor ticks indicating image number. Best viewed in color.
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