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Abstract
Test-time adaptation is a promising research direction that allows the source model to

adapt itself to changes in data distribution without any supervision. Yet, current methods
are usually evaluated on benchmarks that are only a simplification of real-world scenar-
ios. Hence, we propose to validate test-time adaptation methods using the recently intro-
duced datasets for autonomous driving, namely CLAD-C and SHIFT. We observe that
current test-time adaptation methods struggle to effectively handle varying degrees of
domain shift, often resulting in degraded performance that falls below that of the source
model. We noticed that the root of the problem lies in the inability to preserve the knowl-
edge of the source model and adapt to dynamically changing, temporally correlated data
streams. Therefore, we enhance the well-established self-training framework by incor-
porating a small memory buffer to increase model stability and at the same time perform
dynamic adaptation based on the intensity of domain shift. The proposed method, named
AR-TTA, outperforms existing approaches on both synthetic and more real-world bench-
marks and shows robustness across a variety of TTA scenarios. The code is available at
https://github.com/dmn-sjk/AR-TTA.

1 Introduction
Deep neural networks have been shown to achieve remarkable performance in various tasks,
however, they perform very well only when the test-time distribution is close to the training-
time distribution. This poses a significant challenge since in a real-world application a do-
main shift can occur in many circumstances, e.g., weather change, time of day shift, or sensor
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degradation. For this reason, Test-Time Adaptation (TTA) methods have been widely devel-
oped in recent years [29, 31]. They aim to adapt the source data pre-trained model to the
current data distribution on-the-fly during test-time, using an unlabeled stream of test data.

An effective TTA method should work well regardless of a wide range of challenges,
encompassing both abrupt and gradual domain shifts. Moreover, the model should be able to
maintain stable performance even when handling lengthy sequences, potentially extending
indefinitely. Existing approaches are based on updating model parameters using pseudo-
labels or entropy regularization [31, 33]. Further, filtering the less reliable samples is often
employed to reduce error accumulation and improve the computational efficiency [1, 21, 22].
However, all of the methods can become unstable due to the aforementioned difficulties, ac-
cumulate errors, make the pseudo-labels noisier, and cause performance degradation [4].
Without using any source data the model is prone to catastrophic forgetting [19] of previ-
ously acquired knowledge.
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Figure 1: Continual test-time adap-
tation methods evaluated on artificial
(CIFAR10C, ImageNet-C [10]) and nat-
ural (CIFAR10.1 [26], SHIFT [28],
CLAD-C [30]) domain shifts. Our
method is the only one that consistently
allows to improve over the naive strategy
of using the (frozen) source model.

Currently, methods are mostly evaluated on
datasets with artificial, unrealistic domain shifts
or relatively short-length sequences [5, 31, 33],
hence it is unknown how those methods will
work in real-life scenarios with natural domain
shifts. Therefore, we adapt the autonomous
driving benchmark CLAD [30], to the continual
adaptation setting. Moreover, we use a SHIFT
dataset [28], which is synthetically generated by
utilizing the realistic autonomous driving simu-
lator CARLA [9], provides very long sequences,
and allows us to specifically control for different
domain factors (time of day, weather conditions).

In the proposed evaluation setup, we find out
that current approaches lack the required stabil-
ity, as their performance significantly deterio-
rates compared to the source model (Fig. 1). Ad-
ditionally, we notice that they struggle to cor-
rectly estimate batch norm statistics with tempo-
rally correlated data streams and low batch sizes.
In our TTA method for an image classification task, we extend popular self-training frame-
work [33] with a small memory buffer, which is used during adaptation to prevent knowledge
forgetting, without relying on heuristic-based strategies or resetting model weights that are
often used [22, 33]. Thanks to using mixup data augmentation [34], a relatively small number
of samples is required. Furthermore, we develop a module for dynamic batch norm statistics
adaptation, which interpolates the calculated statistics of the pre-trained model and those ob-
tained during testing, based on the intensity of domain shift. We call our method AR-TTA,
as we improve Adaptation by using dynamic batch norm statistics and maintain knowledge
by Repeating samples from the memory buffer combined with mixup data augmentation. As
a result, our proposed method AR-TTA is simple, stable, and works well across a range of
datasets with different shift intensities, when using small batches of data and over very long
sequences. Our main contributions can be summarized as follows:

• We propose novel evaluation benchmarks for TTA based on autonomous-driving sce-
narios, which show significant limitations of existing TTA methods.
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• Based on discovered vulnerabilities, we propose a TTA method that dynamically up-
dates the batch norm statistics based on the intensity of domain shift and use small
memory buffer combined with mixup data augmentation.

• Extensive evaluation shows that the proposed method obtains state-of-the-art perfor-
mance on benchmarks with both artificial distortions and natural domain shifts.

2 Related Work

Test-time adaptation (TTA). Domain adaptation methods can be split into different cate-
gories based on what information is assumed to be available during adaptation [32]. While
in some scenarios, access to some labels in target distribution is available, the most common
scenario is unsupervised domain adaptation, in which the model has access to labeled source
data and unlabeled target data at adaptation time. Additionally, in test-time adaptation the
model needs to adapt to the test-time distribution on-the-fly, in an online fashion. In the
test-time training (TTT) method [29] the model solves self-supervised tasks on the incoming
batches of data to update its parameters. TENT [31] updates only batch-norm weights to
minimize predictions entropy. EATA [21] further improves the efficiency of test-time adap-
tation methods, by using only diverse and reliable samples (with low prediction entropy).
Additionally, it uses EWC [13] regularization to prevent drastic changes in parameters im-
portant for the source domain. Contrary to the TENT and EATA approaches, CoTTA [33]
updates the whole model. To prevent performance degradation it uses exponential weight
averaging as well as stochastic model restoration, where randomly selected weights are re-
set to the source model. SAR [22] further improves by removing noisy test samples with
large gradients and using sharpness-aware minimization. Nevertheless, they also use model
reset, to prevent forgetting. RMT [8] propose a mean teach framework and adapt it based
on contrastive loss, self-training loss, and a simple replay strategy utilizing all of the source
training data during test-time. Moreover, it assumes an additional warm-up step before the
adaptation. Our method uses a small number of replay exemplars and does not require any
extra steps before TTA.

TTA benchmarks. The most popular setting for test-time adaptation includes applying dif-
ferent classes of synthetic corruptions proposed in [10] to commonly used datasets, like
CIFAR10 [14] or ImageNet [7] to artificially obtain domain shifts. Another popular dataset
for continual test-time adaptation is DomainNet [23] which consists of images in different
domains (e.g., sketches, infographics). Yet, the distribution shifts arising in real-world de-
ployment, e.g., in autonomous driving, may be very dissimilar from different renditions of
the same objects. Hence, recently a CLAD, autonomous driving benchmark [30] was in-
troduced. It consists of naturally occurring distribution shifts like changes in weather and
lighting conditions, traffic intensity, etc. It was developed for the supervised continual learn-
ing scenario. In this work, we use it for test-time adaptation, that is without using any label
information. In our work, we also use SHIFT benchmark [28], a synthetically generated
dataset for autonomous driving that captures the continuously evolving nature of the real
world. Similarly to us, CoTTA [33] includes realistic domain shifts but their test is very
small (1600 images). To sum up, we extend over previous TTA work by focusing on realis-
tic continual domain shifts over very long sequences.
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Figure 2: Our method, AR-TTA, utilizes a replay strategy and the mean teacher framework.
Each image is paired with an exemplar sampled from memory and image pairs are mixed
up. Similarly, pseudo-labels from the teacher model are mixed up with the labels of sampled
exemplars. The student model is updated based on cross-entropy loss between its predictions
on augmented samples and augmented pseudo-labels. The teacher model is adapted based
on an exponential moving average of student’s weights. Predictions for each image are taken
from the teacher model.

3 Method
Continual TTA aims to adapt the pre-trained model fθ0 trained on the labeled source data
(X S,YS) to the ever-changing stream of unlabeled test data batches xT on-the-fly during the
evaluation. Our proposed approach (Fig. 2.) can be divided into three parts. We start the
description by introducing the model update procedure in Section 3.1. Then, in Section 3.2
we explain the usage of experience replay with mixup augmentation. The process of adapting
batch normalization statistics is presented in Section 3.3

3.1 Weight-averaged Consistency
Following previous works [8, 33], we use the self-training mean teacher framework to up-
date the model. It improves the reliability of pseudo-labels and minimizes the risk of error
accumulation. We initialize two identical artificial neural network models, student model
fθ and teacher model fθ ′ , with the equal weights obtained by training on source data. For
each batch of test data xT

t at time step t, predictions are derived from both models. Teacher
model predictions ŷ′Tt are used as soft pseudo-labels. The student model is updated by the
cross-entropy loss between its predictions and the pseudo-labels:

Lθt (x
T
t ) =−∑

c
ŷ′Tt,c log ŷT

t,c (1)

where ŷT
t,c is the probability of class c predicted by the student model. Next, teacher’s weights

θ ′ are updated by exponential moving average of student’s weights θ :

θ
′
t+1 = αθ

′
t +(1−α)θt+1 (2)

where α is a smoothing factor. Using a weight-averaged teacher model ensures less noisy
pseudo-labels [33], improves generatlization [20], and added inertia prevents rapid weights
update based on noisy self-training feedback.

We do not limit the weights update only to affine parameters of batch normalization
layers, as in many other TTA methods [21, 22, 31], and we adapt the whole model. We
argue that adapting only batch normalization layer weights does not give the model enough
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flexibility to perform successfully on varying domains. We confirm this claim experimentally
in the appendix.

3.2 Experience Replay with Adaptation

During continual test-time adaptation, self-training feedback is not guaranteed to be accurate,
and frequent model updates inevitably strive for significant error accumulation, catastrophic
forgetting, and even model collapse [22]. Continual learning works show that experience
replay is one of the most effective strategies for mitigating catastrophic forgetting [2, 3,
24, 30]. Following this insight we propose to use the replay strategy during adaptation to
remind the model what it has learned and strengthen its initial knowledge. Building on
this, we integrate Mixup data augmentation [34] to enhance model robustness, inspired by
works such as [15, 35].

After completing the pre-training of the source model, we store a low, equal for each
class, number of random exemplars from the labeled source data in the memory. In each
test-time adaptation iteration, we randomly sample exemplars xS

t , along with their labels
yS

t , from memory. The number of sampled exemplars is equal to the batch size. Mixed
up batch of samples x̃t is generated by linearly interpolating samples from test data with
samples from memory:

x̃t = λxT
t +(1−λ )xS

t (3)

where λ ∼ Beta(ψ,ρ), for ψ,ρ ∈ (0,∞). Similarly, labels for cross-entropy loss are the
result of interpolation between pseudo-labels produced by the teacher model based on the
current unmodified test batch ŷ′Tt and labels yS

t from the memory, with the same λ :

ỹt = λ ŷ′Tt +(1−λ )yS
t (4)

Student model takes augmented batch x̃t as input. Its predictions are compared with interpo-
lated labels ỹt to calculate the loss as described in the previous Section 3.1.

A similar approach to mixing exemplars from replay memory with the ones to train
on was successfully used in LUMP [15], however, they used this method for the continual
representation learning task. Using experience replay along with the Mixup augmentation
helps the model preserve already obtained knowledge and makes the noisiness of pseudo-
labels less impactful for the adaptation process.

3.3 Dynamic Batch Norm Statistics

Batch normalization [12] (BN) layers normalize network values using running statistics from
initial training data, applied during test-time. However, out-of-distribution data can disrupt
this process, leading to poor model performance. Test-time adaptation methods [21, 22, 31,
33] often recalculate statistics per each batch separately. However, this approach can be
flawed due to small sample sizes and temporal data correlation. In these cases, using BN
statistics from source data may offer a more accurate distribution estimation.

To perform a robust statistics estimation, we take the inspiration from [11] and propose
to calculate BN statistics φt = (µt ,σt) at time step t during test-time by linearly interpolating
between saved statistics from source data φ S and calculated values from current batch φ T

t :

φt = (1−βema)φ
S +βemaφ

T
t (5)
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where βema is a parameter that weights the influence of saved and currently calculated statis-
tics. Since the severity of the distribution shift might vary, we need to adequately adjust the
value of βema. It should be large in cases when the distribution shift is severe compared to
the source domain and low when the distributions are similar. Following [11], we utilize the
symmetric KL divergence as a measure of distance between distributions D(φt−1,φ

T
t ):

D(φt−1,φ
T
t ) =

1
C

C

∑
i=1

KL(φt−1,i||φ T
t,i)+KL(φ T

t,i||φt−1,i) (6)

The distance is used to calculate βt at time step t:

βt = 1− e−γD(φt−1,φ
T
t ) (7)

where γ is a scale hyperparameter. To compensate for the fact that the current distribution can
be wrongly estimated and to provide more stability for the adaptation, we take into account
previous β1:t−1 values and use an exponential moving average for βema using α coefficient:

βema = (1−α)βt−1 +αβt (8)

Our method differs from MECTA [11] by preserving the original BN statistics instead
of using exponential moving averages. We are motivated by the fact that changing this
value causes the inevitable forgetting, and susceptibility to temporal correlation. We ensure
consistent performance on similar domains to the source data. At the same time, we allow
for a slight drift away from source data statistics, by using the exponential moving average
of β parameter, giving enough flexibility for the adaptation to severe domain shifts.

4 Experiments
Datasets and Benchmarks. We evaluate the methods on multiple image classification
datasets with domain shifts. We use CIFAR10C and ImageNet-C as benchmarks with ar-
tificial, corruption-based shifts, widely utilized for evaluation of the test-time adaptation ap-
proaches [8, 21, 22, 31, 33]. The experiments with natural shifts include tests on CI-
FAR10.1 [25] and SHIFT [28] datasets, and CLAD-C continual learning benchmark [30]
adapted to the test-time adaptation setting.

CIFAR10.1 was designed to minimize the distribution shift relative to the original CI-
FAR10 dataset. This allows us to test the robustness of TTA methods to very delicate distri-
bution shifts. The goal of CLAD-C benchmark was to introduce a more realistic testing bed
for continual learning. The images taken at different locations and conditions are chrono-
logically ordered, inducing distribution shifts in labels and domains. It consists of 6 test se-
quences. We pre-train the source model on the first train sequence. TTA is continually tested
on the 5 remaining ones with a total number of 17092 images. In the SHIFT dataset, images
are taken in numerous types of realistic domains simulated in a virtual environment, includ-
ing different weather and times of day. We consider it a natural domain shift benchmark
due to its realistic representation of distribution shifts, which are induced by real conditions
rather than image corruptions. We train the source model on images taken in clear weather
during the day and test the adaptation methods for various weather combinations and times
of day. We end up with 14 different domains resulting in a total of 380667 images. We
called our original continual test-time adaptation benchmark the SHIFT-C. More details can
be found in the appendix.
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Methodology. We examine the continual test-time adaptation setup where the model is con-
tinually adapted to new domains without resetting the model unless it is part of a tested
method. To simulate the continuous stream of data and the need for the model to adapt
quickly, we use a low batch size of 10. This is also the batch size commonly used in the on-
line continual learning [16]. In embedded applications, limited resources often mean smaller
batch sizes, necessitating TTA methods to work effectively with fewer samples. We assess
the methods using mean classification accuracy and average mean class accuracy (AMCA).
The latter calculates the mean accuracy over all classes averaged for each domain, making
every class equally important in class-imbalanced datasets.
Baselines. We conduct experiments involving six state-of-the-art methods as baselines:
TENT-continual [31], EATA [21], CoTTA [33], SAR [22], and RMT [8]. Moreover, we
show results for discarding BN statistics from source data and calculating the statistics for
each batch separately (BN-1) [27]. We also report the performance of the frozen source
model (Source). To provide a fair comparison, the results without a replay strategy of RMT
and our method (AR-TTA) are presented.
Implementation Details. Following other state-of-the-art TTA works, we use pre-trained
WideResnet28/ResNet50 models from RobustBench [6] model zoo for CIFAR10C and
CIFAR10.1/ImageNet-C datasets. On the rest of the benchmarks, we utilize ResNet50 ar-
chitecture with weights pre-trained on ImageNet obtained from torchvision library [17] and
finetuned to the source data for the specific benchmark.

Our method utilizes the default replay memory size of 2000 samples, which is commonly
used in continual learning settings [18] and adds only minor storage requirements. The RMT
method utilizes all of the source training data, following the original work. The rest of the
details regarding the technical side of experiments can be found in the appendix.

4.1 Results

The results for all of the tested benchmarks are presented in Table 1. Our method can achieve
the best average accuracy of 75.5% indicating the robustness of our approach. Moreover, it
shows a solid performance even without the replay method.
Artificial Domain Shifts. Artificial domain shifts pose a great challenge for source models,
achieving only 56.5%/17.1% mean accuracy for CIFAR10C/ImageNet-C. Calculating BN
statistics for each batch separately, already significantly improves the result to 75.0%/26.9%
accuracy on corrupted images. Each of the compared state-of-the-art TTA methods uses the
BN-1 technique, therefore their performance improves over it, but the increase in accuracy
value is not that significant. RMT outperformed our method on CIFAR10C, however, it lacks
performance on other benchmarks and utilizes the whole source training dataset for replay,
rendering AR-TTA a more reliable method for different kinds of datasets.
Natural Domain Shifts. The BN-1 method significantly degrades the performance of the
frozen source model on natural shifts by about 8-10 percentage points of accuracy. Simi-
larly, the state-of-the-art TTA methods achieve significantly lower mean accuracy than the
Source, rendering them ineffective for natural domain shifts. It suggests that benchmarking
such methods on artificial domain shifts in the form of corruptions is not a reliable esti-
mate of the TTA method’s performance in practical applications. Our method, which uses
pre-calculated statistics and exemplars of source data during adaptation, outperformed state-
of-the-art methods and achieved higher accuracy than the source model. This indicates the
effectiveness and adapting capabilities. Keeping the pre-calculated statistics intact might
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Table 1: Classification accuracy (%) for all of the tested online continual test-time adaptation
tasks. Methods that use exemplars are in the right section. Red color indicates accuracy lower
compared to a source model.

Method CIFAR10C ImageNet-C CIFAR10.1 CLAD-C SHIFT-C Average
Source 56.5 18.1 88.3 81.3 93.5 67.5
BN-1 75.0 26.9 81.3 71.1 85.1 67.9
TENT [31] 76.7 29.2 82.3 71.5 82.7 68.5
EATA [21] 78.2 31.5 82.9 71.1 85.1 69.8
CoTTA [33] 75.7 15.5 82.3 72.6 77.4 64.7
SAR [22] 75.2 30.8 81.3 71.1 85.1 68.7
RMT w/o replay [8] 77.6 21.7 80.6 75.1 92.2 69.4
RMT [8] 83.1 30.5 83.3 75.3 95.9 73.6
AR-TTA (Ours) w/o replay 77.3±0.07 30.0±0.45 88.2±0.10 83.9±0.30 92.4±0.25 74.4
AR-TTA (Ours) 78.8±0.13 32.0±0.07 88.3±0.05 83.7±0.64 94.8±0.03 75.5

sometimes be more beneficial, especially on domain shifts on which the source model per-
forms relatively well.

Accuracy Over Time. Results in Figure 3 show how the accuracy of state-of-the-art meth-
ods drops below the source model performance. We can see that AR-TTA maintains the
accuracy of the source model on the first two domains where the source model works well,
and then improves over it when the source model performance deteriorates (at domain T3).

Table 2: Classification accuracy and average mean class accuracy (AMCA) (%) for the
CLAD-C continual test-time adaptation task.

t −−−−−−−−−−−−−−−→
Method T1 T2 T3 T4 T5 Mean day Mean night Mean AMCA
Source 75.6 85.9 73.3 87.5 66.2 86.6 71.2 81.3 57.6
BN-1 73.2 69.9 75.0 75.5 59.7 72.2 69.1 71.1 48.3
TENT [31] 73.4 69.8 76.5 76.1 59.7 72.4 69.8 71.5 47.6
EATA [21] 73.3 69.9 75.0 75.6 59.7 72.2 69.1 71.1 48.4
CoTTA [33] 75.2 69.3 80.2 77.0 62.7 72.4 72.9 72.6 44.8
SAR [22] 73.2 69.9 75.0 75.5 59.7 72.2 69.1 71.1 48.3
RMT w/o replay [8] 87.1 70.9 86.6 76.9 64.3 73.9 79.3 75.1 48.4
RMT [8] 83.8 71.3 85.0 77.6 66.4 74.5 78.4 75.3 48.8
AR-TTA (Ours) w/o replay 76.9 86.7 81.4 87.9 73.5 87.2 77.1 83.9±0.30 59.6±2.92
AR-TTA (Ours) 77.2 86.7 80.0 89.6 70.7 87.8 75.7 83.7±0.64 63.1±3.32

Table 3: Classification accuracy and average mean class accuracy (AMCA) (%) for the
SHIFT-C continual test-time adaptation task.

t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method
daytime dawn/dusk night

Mean AMCA
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Source 97.9 98.2 97.5 92.5 93.6 94.1 94.0 93.5 91.5 89.1 89.3 90.6 89.1 90.7 93.5 89.5
BN-1 89.1 88.9 88.0 86.2 85.3 84.8 87.3 83.5 84.8 81.3 81.2 80.3 79.6 83.5 85.1 69.9
TENT [31] 89.6 88.8 87.5 84.6 83.3 81.2 85.0 80.7 80.2 78.0 77.0 76.1 75.7 77.6 82.7 57.6
EATA [21] 89.1 88.9 88.0 86.2 85.3 84.8 87.4 83.6 84.9 81.4 81.4 80.3 79.7 83.7 85.1 70.5
CoTTA [33] 88.2 87.1 84.1 80.5 78.7 76.2 80.5 74.0 74.9 71.5 70.3 67.3 64.9 66.2 77.4 47.2
SAR [22] 89.1 88.9 88.0 86.2 85.3 84.8 87.3 83.5 84.8 81.3 81.2 80.3 79.6 83.6 85.1 69.9
RMT w/o replay [8] 93.0 94.2 93.6 91.7 91.0 91.3 93.0 92.2 90.8 90.7 90.9 91.7 90.5 91.7 92.0 80.3
RMT [8] 95.9 97.2 97.0 95.4 95.4 95.9 96.5 96.3 95.0 94.9 95.1 96.3 95.5 95.6 95.9 91.1
AR-TTA (Ours) w/o replay 96.4 96.5 95.3 93.2 92.2 91.9 93.2 91.4 91.8 88.7 88.7 88.6 87.5 91.2 92.4±0.25 83.5±0.96
AR-TTA (Ours) 97.7 98.0 97.4 94.3 94.2 95.5 94.8 95.2 93.1 92.3 92.7 93.0 91.4 92.6 94.8±0.03 90.2±0.24
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Table 4: Classification accuracy (%) for CI-
FAR10C and CLAD-C tasks for different
configurations of the proposed method.

Method CIFAR10C CLAD-C
A: Weight-avg. teacher 75.7±0.07 71.1±0.53
B: A + Replay memory 77.3±0.16 69.0±0.66
C: B + Mixup 78.5±0.13 72.2±0.31
D: A + Dynamic BN stats 77.3±0.07 83.8±0.82
E: D + Replay memory 79.8±0.03 82.8±1.09
AR-TTA (Ours): E + Mixup 78.8±0.13 83.7±0.64

Table 5: Classification accuracy and average
mean class accuracy (AMCA) (%) results for
state-of-the-art methods with simple replay
method added.

Method CIFAR10C CLAD-C
Mean Mean AMCA

Source 56.5 81.3 57.6
TENT [31] 77.3 70.3 49.2
EATA [21] 78.6 71.1 48.4
CoTTA [33] 79.9 72.6 51.0
SAR [22] 75.3 71.1 48.3
AR-TTA (Ours) 78.8 83.7 63.1
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Figure 3: Batch-wise classification accuracy (%) averaged in a window of 400 batches on
CLAD-C benchmark for the chosen methods continually adapted to the sequence of data,
with major ticks on the x-axis symbolizing the beginning of a different domain and minor
ticks indicating image number. Best viewed in color.

4.2 Detailed Analysis

Effect Of Exemplars. Tables 2 and 3 present the AMCA results for CLAD-C and SHIFT-C
benchmarks. The results show a significant improvement in mean per-class accuracy while
using a replay method. This suggests that the usage of replay memory might be important
for keeping the performance for each class high in class-imbalanced TTA setups. Also, on
average, our method is still better than that of our competitors when all methods have used
exemplars and is the only one that consistently improves over the frozen model.
Component Analysis. Table 4 shows the contribution of individual components used in the
proposed method. For the initial setup A, we used a weight-averaged teacher model to gener-
ate pseudo-labels and cross-entropy loss to adapt the model of which the BN statistics from
source data are discarded. Adding a simple replay method (B, E) by injecting randomly aug-
mented exemplars from memory to the batch in a 1:1 ratio, did not improve the performance
on every dataset. It can be seen that mixup data augmentation can boost the performance of
a simple replay method (C). Moreover, dynamic BN statistics significantly contribute to the
accuracy increase (D, E, AR-TTA), especially on the CLAD-C benchmark.
Baselines With Simple Replay Memory. To ensure a fair comparison and check the state-
of-the-art approaches’ performance with the use of a replay strategy, we added a simple
replay method to each of them. A constant number of replay exemplars, equal to the batch
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size, was sampled on each batch from a class-balanced replay memory. The value of cross
entropy loss calculated from exemplars was added to the original loss of each method. The
results are in the Table 5. While the proposed method performs slightly worse than CoTTA
on the CIFAR10C, it performs significantly better on the natural domain shift dataset. Most
importantly, our method is the only one that constantly improves over the source model.
Computational Efficiency Evaluation Table 6 presents a comparison of wall-clock time
and memory usage for baseline methods and our approach on 10,000 images from CI-
FAR10C benchmark. While our method does not rank as the most computationally efficient,
it achieves a balance between computational demands and performance. Notably, despite in-
corporating exemplars, we maintain a consistent computational budget. This is because the
additional samples are utilized within the mix up augmentation, leaving the training batch
size unchanged. This approach contrasts with the RMT method, where the use of replay
techniques substantially increases computational complexity.

Table 6: The wall-clock time (seconds) and memory usage (MB) measured for processing
10,000 images of CIFAR10C on a single RTX 4080 GPU.

Method Time [s] Memory [MB]
Source 8.0 304
BN-1 8.3 304
TENT [31] 16.3 506
EATA [21] 24.3 505
CoTTA [33] 319.4 1532
SAR [22] 30.8 506
RMT [8] w/o replay 55.5 1576
RMT [8] 163.7 3039
AR-TTA (Ours) w/o replay 66.2 1098
AR-TTA (Ours) 66.6 1098

5 Conclusion
In this paper, we evaluate existing continual test-time adaptation (TTA) methods in real-life
scenarios using more realistic data by proposing two new evaluation benchmarks, namely
SHIFT-C and CLAD-C. Our findings reveal that current state-of-the-art methods are inade-
quate in such settings, as they fall short of achieving accuracies better than the frozen source
model. This raises concerns about the applicability of certain TTA methods in the real world
and sheds light on the frequent model resets observed in some approaches. To address these
limitations, we propose a novel and straightforward method called AR-TTA, based on the
self-training framework. AR-TTA utilizes a small memory buffer of source data, combined
with mixup data augmentation, and dynamically updates the batch norm statistics based on
the intensity of domain shift.

Through experimental studies, we demonstrate that the AR-TTA method achieves state-
of-the-art performance on various benchmarks. These benchmarks include realistic evalu-
ations with small batch sizes, long test sequences, varying levels of domain shift, as well
as artificial scenarios such as corrupted CIFAR10-C. Notably, AR-TTA consistently outper-
forms the source model, which serves as the ultimate baseline for feasible TTA methods.
Our more realistic evaluation of TTA with a variety of different datasets provides a better
understanding of their potential benefits and shortcomings.
Limitations. The main limitation of our method is that we use a memory buffer from
the source data, which might be an issue in resource-constrained scenarios or if there are
some privacy concerns.
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