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Abstract

Depth-based 3D hand pose estimation is an important but challenging task in robotics
and autonomous driving. Recently, more attention has been given to dense regression
methods for this task. These methods offer a good balance between accuracy and com-
putational efficiency through the densely regressing hand joint offset maps. Despite the
benefits, large-scale regression offset values are often affected by noise and outliers,
leading to a significant drop in accuracy. To address this issue, we re-formulate 3D hand
pose estimation as a dense ordinal regression problem and introduced a new Dense Ordi-
nal Regression 3D Pose Network (DOR3D-Net). Specifically, we first decompose offset
value regression into sub-tasks of binary classifications with ordinal constraints. Then,
each binary classifier can predict the probability of a binary spatial relationship relative
to joint, which is easier to train and yield much lower level of noise. The estimated hand
joint positions are inferred by aggregating the ordinal regression results at local positions
with a weighted sum. Furthermore, both joint regression loss and ordinal regression loss
are used to train our DOR3D-Net in an end-to-end manner. Extensive experiments on
public datasets (ICVL, MSRA, NYU and HANDS2017) show that our design provides
significant improvements over SOTA methods.

1 Introduction
High-quality hand pose estimation provides an important way of user interaction for

various applications, such as robotics [8, 20], virtual reality [6, 33] and autonomous driv-
ing [32]. With the development of deep learning, hand pose estimation methods from RGB
images [1, 13, 15, 24, 34] and depth images [2, 22, 23, 30] have attracted much attention.
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Figure 1: Visualization results of SOTA meth-
ods and our method. Row 1 and 2 show pre-
dictions from A2J [30] and JGR-P2O [5] re-
spectively and row 3 shows our predictions.
Column 1 shows the final result of prediction
for an exemplar hand joint and column 2 and
3 show the x-offset and y-offset maps respec-
tively. Notice that several error areas present
in the offset maps from A2J and JGR-P2O
(highlighted with red and yellow boxes). In
contrast, our probability map is clean.
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This paper focuses on improving depth-based 3D hand pose estimation task, which aims to
output hand joint coordinates in 3D space from an input depth image.

Existing hand pose estimation methods with dominant performance employ deep learn-
ing models of different structures. Some models [3, 33] extract deep representations and then
directly regress the joint coordinates or other forms of hand model parameters. Differently,
more recent models explore dense predictions. They usually use a dense grid and for each
grid position predict an offset vector that points to a joint. The densely predicted offset vec-
tors form an offset map and then are used to infer joint coordinates. For example, A2J [30]
proposes dense anchors and aggregates the offsets of these anchors to estimate each joint in
the image plane. JGR-P2O [5] regresses joints by weighted averaging over all pixels’ offsets
in both image plane and depth space. For these methods, depending on the distance between
a grid position and its target joint, the offset value varies in a large interval, especially for
high-resolution images. However, large-scale regression offset values are often affected by
noise and outliers. These flaws are difficult to completely remove and will propagate to
subsequent steps resulting in degradation in the estimated joint accuracy. In this paper, we
explore ordinal constraints to improve dense prediction methods for hand pose estimation.
Specifically, as a point traverses in space along the scanline, the spatial relationship between
the point’s position to a target joint should vary smoothly with strict ordinal constraints. A
closely related previous work [18] is ordinal regression which converts a regression task into
a series of binary classifies with ordinal constraints. The ordinal regression has been proven
to be useful for several tasks such as age estimation [18] and depth estimation [7].

To our best knowledge, we are the first re-formulate 3D hand pose estimation as a dense
ordinal regression problem and propose a novel Dense Ordinal Regression 3D Pose Net-
work (DOR3D-Net). Specifically, the design of DOR3D-Net includes: (1) The problem of
hand joint regression in 3D is decomposed into sub-tasks of binary classifications. Each bi-
nary classifier is associated to a grid in 3D with different interval distributions in image and
depth dimensions. Each binary classifier predicts probability of a binary spatial relationship
between the position and a joint point. (2) The ordinal regression results at different local
positions are aggregated to infer joint positions with weighted sum. This allows us using a
joint position loss together with the ordinal regression loss to supervise DOR3D-Net.

The experiments show that the binary classifiers in our design are easy to train and yield
much lower level of noise. Fig. 1 visualizes the offset maps predicted by A2J [30], JGR-
P2O [5] and our probability map in image plane respectively. The first row shows the off-
set maps of A2J. Anchor offset values are wrong in several local areas (highlighted by red
boxes). The boundary of zero offset value appears as a curve, which severely deviates from
its ideal form as a straight line. For JGR-P2O, the learned offset maps also include appar-
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ent errors (highlighted by yellow boxes). In contrast, the probability maps generated by
DOR3D-Net are much cleaner and well approximate those of their ideal forms. The main
contributions are summarized as follows:

• We are the first to re-formulate the 3D hand pose estimation as a dense ordinal re-
gression problem and propose a novel Dense Ordinal Regression 3D Pose Network.

• Specifically, we propose Ordinal Regression (OR) module to decompose offset value
regression into sub-tasks of binary classifications with less noises and outliers. Fur-
thermore, both joint regression loss and ordinal regression loss are used to train our
DOR3D-Net in an end-to-end manner.

• DOR3D-Net is remarkably superior to SOTAs on existing methods, revealing the ef-
fectiveness of our approach.

2 Related Work

2.1 Depth Image Based Hand Pose Estimation
This paper focuses on the depth image-based 3D hand pose estimation task. According to
summary of a large-scale public challenge HANDS2017 [31], state-of-the-art hand pose es-
timation methods can be roughly divided into two categories: regression-based methods and
detection-based methods. Regression-based method directly regress hand joint parameters
with extracted global feature representation. DenseRecurrent [3] uses PointNet network to
extract features and iteratively refines the estimated hand pose with a point cloud represen-
tation. Detection-based methods generate dense pixel-wise estimations with heatmaps or
offset vectors from local features. V2V-PoseNet [17] uses 3D CNN network to extract a
feature-based volumetric representation and estimates volumetric heatmaps. DenseReg [29]
decompose 3D hand pose as 3D heatmaps and 3D joint offsets and estimates these parame-
ters by dense pixel-wise regression. Compared with heatmap-based method with relatively
high computational burden, offset-based methods achieve a better trade-off between accu-
racy and efficiency and can be adapted in resource-constrained platforms. A2J [30] predicts
per-joint pixel-wise offset through a dense set of anchor points on the input image. JGR-
P2O [5] proposes a pixel-to-offset prediction network to address the trade-off between ac-
curacy and efficiency for hand pose estimation. HandFoldingNet [2] inputs 3D hand point
cloud and acquires the hand joint locations based on point-wise regression. SRN [21] re-
gresses the joint position through multiple stacked network modules to capture spatial in-
formation. TriHorn-Net[23] computes two complementary attention maps of each joint and
uses appearance-based data augmentation to improve the accuracy of hand pose estimation.

2.2 Ordinal Regression
The ordinal regression method maps direct regression into multiple binary classifiers and
learns to predict ordinal labels. By preserving the natural order and supervising with mul-
tiple rank labels, the ordinal regression methods [7, 12, 14] have been proven to achieve
much higher accuracy and faster convergence than the direct regression. DORN [7] converts
the depth prediction into an ordinal regression problem, which discretizes depth value into
several intervals and obtains ordinal labels to improve depth estimation accuracy. Further-
more, [19] also proposes the definitions of ordinal depth, which are based on comparing the
relative depth between different joints. However, [19] is different from our DOR3D-Net. In
this paper, we reformulate the pose estimation problem into an ordinal regression problem
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and compare binary spatial relationships between a sampling position with respect to a joint
point. Our proposed dense ordinal supervision guarantees the probability maps are ordinal,
which reduces the depth noise effect and improves 3D joint pose estimation accuracy.

3 Methods
In this section, we first introduce the feature extractor module, which use a transformer-
based feature extractor to learn dense local feature representations. Then, we elaborate on
the details of dense ordinal regression module, which design to output pixel-wise probability
maps and regress hand joints. Finally, we introduce the overall training procedure.

- 2-

Figure2

P
a

tc
h

 P
a

rt
it
io

n

L
in

e
a

r 
E

m
b

e
d

d
in

g

Swin 

Transformer

Block

Stage−1

P
a

tc
h

 M
e

rg
in

g

Swin 

Transformer

Block

Stage−2

P
a
tc

h
 M

e
rg

in
g

Swin 

Transformer

Block

Stage−3

P
a

tc
h

 M
e

rg
in

g

Swin 

Transformer

Block

Stage−4

𝐻

4
×
𝑊

4
× 𝐶

𝐻

8
×
𝑊

8
× 2𝐶

𝐻

16
×
𝑊

16
× 4𝐶 𝐻

32
×
𝑊

32
× 8𝐶

𝐻

4
×
𝑊

4
× 48

× 2 × 2 × 18 × 2

𝐻 ×𝑊 × 3

Image+UVMaps
Fz

Fxy

Figure 2: The pipeline of our transformer-based feature extractor. It contains patch partition
and four Swin Transformer stages. Two feature maps from the last stage are sent into the
dense ordinal regression module for 3D hand pose prediction.

3.1 Feature Extractor
In the transformer-based feature extractor module (Fig. 2), the input image plane is split into
multiple 4× 4 patches with the patch partition module. Each patch is treated as a ‘token’.
Four Swin Transformer stages are used to learn attention among patch tokens for capturing
long-range contextual information. These stages consist of linear embedding layers, patch
merging layers, and Swin Transformer blocks with their structure details specified in [16].

Since the Swin Transformer structure contains only relative positional embedding, we
modify the input by adding U , V coordination maps (UVMap) and concat them together with
the depth map to provide global absolute spatial information. U and V maps are generated
by linear scaling, which corresponds to the in-plain coordinate map of each pixel. Here,
U (i, j) = j/W, i ∈ [0,H) , j ∈ [0,W ) ; V (i, j) = i/H, i ∈ [0,H) , j ∈ [0,W ) .

Considering the in-plane xy regression and depth-plane z regression are quite different,
following the design of A2J [30], two feature maps Fxy and Fz are output from ‘Stage-4’ with
the same dimensions H

32 ×
W
32 ×8C. Then, both decoded feature maps are regressed with the

dense ordinal regression module for 3D joint prediction.

3.2 Dense Ordinal Regression Module
Fig. 3 illustrates the pipeline for the dense ordinal regression module. With input as the
learned feature maps, we utilize separate branches to estimate the three-dimensional coordi-
nates of hand joints independently and output the predicted hand joint pose.

Normal Discretization. Since the hand joints reside in three dimensional space, we
decouple the 3D solution space and quantize it by representative discrete values along each
of the three dimensions. In image plane x-axis and y-axis directions, the intervals are [0,W )
and [0,H) respectively. Uniform discretization (UD) is adopted to divide the image plane.
Assuming that the intervals are discretized into Kx,Ky sub-intervals along x-axis and y-axis
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Figure 3: The pipeline of our proposed dense ordinal regression module. The inputs are two
feature maps. With the reshape and softmax operators, we obtain binary probability maps.
With weighted sum, the binary probabilities at local positions are aggregated to infer hand
keypoints along each of the three dimensions respectively.
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Figure 4: Visualization of the proposed x- and z-discretization process. x-axis uses uni-
form discretization and z-axis applies normal discretization. For the x-probability map, each
column represents the probability that the keypoint is larger than the corresponding dis-
cretization threshold. For the z-probability map, each map represents the probability that the
keypoint is larger than the corresponding discretization threshold.

directions respectively, the UD can be formulated as: xi = i∗W/Kx, y j = j∗H/Ky, where xi,
y j are sampling points and then form well-ordered sets Sx = x0, ...,xKx−1, Sy = y0, ...,yKy−1.
Here, we set Kx =W/2, Ky = H/2.

In the z-axis direction, we analyze statistics of the joints z coordinate distribution and
notice that it is close to normal distribution. Following this, the sampling interval of normal
discretization (ND) becomes smaller as the sampling position becomes closer to the distri-
bution center. In our specific implementation, we first divide the z-axis [0,D) into several
sub-intervals evenly, and then increase the frequency of sampling points by the exponential
power of 2 for the consecutive sub-intervals to the midpoint D/2. Sampling points for the
other half of the z-interval can be obtained by symmetry. These sampling points form a
well-ordered set Sz = z0, ...,zKz−1. Here, we set Kz = D/4, D refers to the depth range of the
cropped image. Fig. 4 (a) and (c) visualize the distributions along x and z respectively.

Ordinal Regression. After obtaining the discrete ordered classification sets Sx,Sy,Sz, we
cast the hand pose estimation problem into an ordinal regress problem to learn the network.
These well-ordered sampling points along x-axis, y-axis, and z-axis directions construct
multiple binary classification sub-problems. For each predicted coordinate of joint a, these
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binary classifiers are used to predict whether the hand joint location is larger than these dis-
cretization thresholds respectively and then form probability map Probx, Proby, and Probz.
Here, joint location is represented as Ja = (Ja

x ,J
a
y ,J

a
z ).

Probx(i, j,a) = P(Ja
x > x j), Proby(i, j,a) = P(Ja

y > yi), Probz(i, j,k,a) = P(Ja
z > zk). (1)

Fig. 3 illustrates the probability map generation process. Let Fxy ∈ R
H
32×

W
32×8C denote the

feature maps in the image plane, after convolution, reshape and softmax operators, the fea-
ture map Fxy is converted into the probability map Probx ∈ R

H
32×Kx×A and Proby ∈ RKy×W

32×A.
For the feature map Fz ∈ R

H
32×

W
32×8C, after convolution and softmax operators, it is mapped

into the probability map Probz ∈ R
H
32×

W
32×Kz×A. A is the number of joints. To guarantee the

accuracy of classification, all these probability maps are densely supervised with the ground
truth (GT) probability maps and introduced in section 3.3. Obviously, the ordinal regression
solution compares the binary spatial relationship between the keypoint and every discretiza-
tion threshold. In comparison with dense offset regression methods, the solution space is
reduced from a large interval to binary values which is easy to get the optimal solution and
insensitive to the noise and outliers.

Following the ordinal regression methods [12, 18], after obtaining the reliable probability
maps Probx, we weighted the probability with its corresponding classification interval length
and get the hand joint prediction vector in Eq. 2. Here, IL refers to the interval length. For x
and y, we set IL = 2. For z, the interval length changes according to the sampling position,
IL(k) = (zk+1 − zk), zk are sampling points. The final predicted coordinate value x̂ is the
mean value of x̄(i). In the same way, we obtain the coordination ŷ and ẑ from ȳ( j), z̄(i, j) in
Eq. 2, respectively.

x̄(i,a) = IL ·∑ j Probx (i, j,a) ,

ȳ( j,a) = IL ·∑i Proby (i, j,a) ,

z̄(i, j,a) = ∑k IL(k) ·Probz(i, j,k,a).

(2)

We concatenate x̂, ŷ and ẑ as the final results.

3.3 Loss Function
The network is jointly supervised by two loss items: dense ordinal regression loss and joint
regression loss. The binary probability maps along x, y and z-axis are supervised to guaran-
tee that the learned features are robust to the low-quality depth image.

Dense Ordinal Regression (DOR) Loss. To supervise the binary classifiers, we generate
the GT of middle results (GT binary probability maps Probgt

x , Probgt
y and Probgt

z ):

Probgt
x (i, j,a) =

1, i f Ja∗
x ≥ x j, ∀ i

0, otherwise. ∀ i
(3)

where Ja∗
x is the GT coordinate of joint a. Probgt

y and Probgt
z are defined similarly to Probgt

x .
Take the Probx ∈ R

H
32×W×A for an example, the DOR loss is defined as the cross-entropy

loss to densely supervise all binary classification probability maps.

Lord
(
Probx,Probgt

x
)
=− 1

HA
32

∑(Probgt
x log(Probx)+

(
1−Probgt

x
)

log(1−Probx)). (4)

The DOR losses in three dimensions are defined in Eq.5.
Lord_loss = Lord

(
Probx,Probgt

x
)
+Lord

(
Proby,Probgt

y
)
+Lord

(
Probz,Probgt

z
)
. (5)
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Figure 5: Comparison with the state-of-the-art methods: (a-c) 3D per-joint mean error on
MSRA, ICVL and NYU; (d-e) Percentages of success frames on MSRA, ICVL and NYU.

Joint Regression Loss. The GT hand pose supervises the network to generate an accu-
rate hand pose at the final stage. The loss is formulated as L joint_loss =∑a∈ALsmooth (Ja − Ja∗),
where Ja and Ja∗ are the predicted coordinate and the GT of joint a, respectively.

Total Loss Function. The total loss is defined as: L = λ1L joint_loss +λ2Lord_loss, where
λ1 and λ2 are hyperparameters for balancing these terms. Here, λ1 = 3 and λ2 = 2.

4 Experiments
4.1 Experimental Setting
Datasets. There are four widely adopted datasets for 3D hand pose estimation task, including
HANDS2017 [31], MSRA [26], ICVL [27], and NYU [28]. HANDS2017 dataset is com-
posed of Big Hand 2.2M dataset [31] and the First-person Hand Action Dataset (FHAD) [9].
It contains 957K training and 295K testing depth images. MSRA dataset contains 9 sub-
jects with each subject performs 17 hand gestures, and each hand gesture contains about 500
frames. ICVL dataset contains 22K training and 1.5k testing depth images with 3D anno-
tations for 16 joints. The raw images with annotations are augmented to 330K samples by
in-plane rotations. NYU dataset contains 72K training and 8.2K testing depth images labeled
with 3D annotations for 36 joints. Following A2J [30], we only use 14 of the 36 joints from
frontal view for both training and testing. Since the number of raw images in HANDS2017
dataset is over ten times bigger than any of the rest three datasets, we conduct ablation study
on the HANDS2017 dataset.

Implementation Details. DOR3D-Net is trained with 2 NVIDIA V100 GPUs. We adopt
the AdamW optimizer and the learning rate is 3.5×10−4 with a weight decay of 10−4. The
batch size for MSRA, ICVL and NYU datasets is 32, and the batch size for HANDS2017 is
64. For all datasets, the learning rate decays by 0.2 every 7 epoches. Similar to A2J [30] and
DenseRecurrent [3], we use hand center point to crop the hand region from an depth image
and resize the image to 224×224.

Evaluation Metric. We use two standard metrics to evaluate pose estimation perfor-
mance. One is the mean 3D Euclidean distance error (Mean Error) [30]. Another is the
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Table 1: Comparison with the state-of-the-art methods.

Method Mean Error [mm] ↓
MSRA NYU ICVL HANDS17

HandPointNet [10] 8.51 10.54 6.94 -
DenseReg [29] 7.23 10.21 7.30 -
V2V-PoseNet [17] 7.59 8.42 6.28 9.95
Point-to-Point [11] 7.71 8.99 - 9.82
CrossInfoNet [4] 7.86 10.08 6.73
A2J [30] - 8.61 6.46 8.57
JGR-P2O [5] 7.55 8.29 6.02 -
HandFoldingNet [2] 7.34 8.58 5.95 -
SRN [21] 7.16 7.78 6.26 8.39
DenseRecurrent [3] 7.01 6.85 6.05 -
TriHorn-net [23] 7.13 7.68 5.73 -

DOR3D-Net (Ours) 6.93 6.71 5.87 6.99

Table 2: Comparison of heatmap-based methods on NYU dataset [28].
Method Backbone Mean Error [mm]↓

DOR3D-Net (w/ Heatmap Regression) Resnet50 8.63
DOR3D-Net (w/ Ordinal Regression) Resnet50 8.25

percentage of success frames in which the worst joint 3D distance error is below a thresh-
old [30]. Note that, the results of our method are all predicted by a single model.

4.2 Comparison with the State-of-the-art Methods
We compare our method with the state-of-the-art depth image-based hand pose estimation
methods, i.e., HandPointNet [10], DenseReg [29], V2V-PoseNet [17], Point-to-Point [11],
CrossInfoNet [4], A2J [30], JGR-P2O [5], HandFoldingNet [2], SRN [21], DenseRecur-
rent [3], and TriHorn-net [23]. Fig. 5 shows the result of 3D per-joint mean error and the
percentages of success frames over different error thresholds. Meanwhile, Tab. 1 shows the
overall performance of DOR3D-Net and all the methods on four datasets, respectively. It
can be seen that ours outperforms all the other methods on the MSRA, NYU and HANDS17
datasets. On the ICVL dataset, our method is ranked second, with a slightly lower accuracy
than the TriHorn-net [23], which uses an innovative data agumentation approach.

Moreover, to further valid the effectiveness of the dense ordinal regression module, we
compare it with the heatmap-based method [25] with the same backbone Resnet50 on NYU
dataset [28]. Tab. 2 shows that our ordinal regression module surpasses the heatmap-based
method. In a nutshell, DOR3D-Net shows significant superiority over other existing meth-
ods, indicating the benefit of the dense ordinal regression module.

4.3 Ablation Study
To demonstrate the effectiveness of each module in our method, we conduct extensive abla-
tion studies on the HANDS2017 dataset. Tab. 3, Tab. 4, Tab. 5 and Tab. 6 show the experi-
mental results in detail.

Effectiveness of dense ordinal regression module. To verify the effectiveness of the
dense ordinal regression module, we replace the regression module with an offset-based
regression module and show the results in the Tab. 3. Specifically, we design the following
model variants: (1) DOR3D-Net (w/ offset-based regression) : we train the model with the
offset-based regression module; (2) DOR3D-Net (w/ ordinal-based regression) : we train the
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Table 3: Effectiveness of dense ordinal regression module.

Method Mean Error [mm] ↓
x y z all

DOR3D-Net (w/ offset-based regression) 3.31 3.33 4.32 7.34
DOR3D-Net (w/ ordinal-based regression) 3.12 3.19 4.13 6.99

Table 4: Effectiveness of normal discretization.

Method Mean Error [mm] ↓
x y z all

DOR3D-Net (w/ uniform distribution) 3.14 3.19 4.18 7.06
DOR3D-Net (w/ normal distribution) 3.12 3.19 4.13 6.99

model with the dense ordinal regression module; For a fair comparison, we uses the same
backbone and experimental configuration. As shown in Tab. 3, our ordinal-based regression
method significantly outperforms the offset-based regression method, and the 3D mean error
is reduced by 4.77% on HANDS2017 dataset. There are two main reasons: (1) Offset-based
regression module regresses the hand joints in a large 3D solution space, which is hard to
obtain the optimal solution. (2) The dense ordinal regression module predicts probability
maps that vary smoothly with ordinal constraints and are insensitive to noise and outliers.

Effectiveness of normal discretization. To verify the effectiveness of normal discretiza-
tione, we verified two discretization strategies to quantize the z-axis interval and show the
results in Tab. 4. Specifically, DOR3D-Net (w/ uniform distribution) uses uniform distri-
bution strategy. Similarly, DOR3D-Net (w/ normal distribution) uses normal distribution
strategy. The results of DOR3D-Net (w/ uniform distribution) is worse than DOR3D-Net
(w/ normal distribution), demonstrating verifying the effectiveness of normal distribution
strategy. Moreover, we analyze statistics of the hand z coordinate distribution in public four
datasets and notice that it is close to normal distribution (ND).

Effectiveness of feature extractor module. In Sec. III-A, we proposes transformer-
based feature extractor with three designs: (1) UVMap: since the transformer structure con-
tains only relative positional embedding, we design to include UVMap in the input to provide
global absolute spatial information; (2) Introduce transformer structure: it has the powerful
capability to learn the long-range relationship of dense features; (3) Output feature design:
considering the in-plane xy regression and depth-plane z regression are quite different, we
output two features Fxy and Fz from transformer to regress the xy and z coordinates, respec-
tively. We conduct an ablation study on the components in feature extractor and summarize
our results in Tab. 5. The ablation study show that each of designs in transformer-based

- 7-

Figure7

(a) NYU (b) MSRA (c) ICVL

BadSuccessful BadSuccessful BadSuccessful

Dark colors

Bright colors

Figure 6: Joints prediction on NYU, MSRA, and ICVL. Bright colors represent predicted re-
sults and dark colors show ground truth. The visualization results superimpose the predicted
results on the ground truth. Both successful and bad cases are displayed.
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Table 5: Effectiveness of feature extractor module.

Method Module Mean Error[mm]↓ Params[MB]↓ Speed[FPS]↑

Input DOR3D-Net (w/o UVMap) 7.10 86.9 50
DOR3D-Net(w/ UVMap) 6.99 86.9 47

Backbone DOR3D-Net (Resnet50-based) 7.67 32.7 110
DOR3D-Net (Transformer-based) 6.99 86.9 47

Design DOR3D-Net (w/ Fxyz ) 7.04 86.9 47
DOR3D-Net (w/ Fxy&Fz) 6.99 86.9 47

Table 6: Effectiveness of DOR Loss. ’DOR loss’ refers to the dense ordinal regression loss.

Method Module Mean Error[mm]↓ Params[MB]↓ Speed[FPS]↑

Loss DOR3D-Net (w/o DOR loss) 7.31 86.9 47
DOR3D-Net (w/ DOR loss) 6.99 86.9 47

feature extractor provides a meaningful contribution to improving model performance.
Effectiveness of DOR Loss. In this ablation, we investigate the effectiveness of dense

ordinal regression loss (DOR loss) in our method. We design the following model variants:
(1) DOR3D-Net (w/o DOR loss) : we train the model without the dense ordinal regression
loss; (2) DOR3D-Net (w/o DOR loss) : we train the model with the dense ordinal regression
loss; As can be seen from the Tab. 6, without DOR loss, the error increased by 0.32mm. This
also validates that dense probability supervision plays an important role in our DOR3D-Net
to learn representative features and improve hand pose accuracy.

Speed and Parameters. We test our model on a single NVIDIA V100 GPU. The speed
of the Resnet50-based backbone and transformer-based backbone is 110 FPS and 47 FPS,
respectively. The full model meets the real-time requirement for practical applications. The
parameters of Resnet50-based backbone and Transformer-based backbone are 32.7MB and
86.9MB, respectively.

Qualitative Results. Fig. 6 visualizes the successful and failure cases of our full model
performance on MSRA dataset [26], NYU dataset [28] and ICVL dataset [27]. It can be seen
that our method predicts well in most cases, while fails in cases of severe occlusion, large
areas of missing pixels, and challenging viewpoint.

5 Conclusion
In this paper, we propose a DOR3D network that reformulates the 3D hand pose estimation
as a dense ordinal regression problem. In comparison with offset-based regression meth-
ods, this formulation simplifies the solution space from a large interval to binary values
which enables the network to learn easily and find out the optimal solution. Furthermore,
a transformer-based feature extractor is utilized to enhance dense feature presentation and
additional UV coordination maps are generated to provide absolute spatial information. Our
DOR3D-net has achieved the SOTA performance on the HANDS2017, MSRA, NYU and
ICVL datasets. This method provides high accuracy pose estimation which could be useful
in the augmented reality/virtual reality, autonomous driving and robotics. In the future, we
will improve the depth-based hand pose estimation by improving the samples with the chal-
lenging viewpoint. Moreover, we will to improve the model efficiency for porting to mobile
platforms for low-latency user interaction.
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