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A Training Details
A.1 DINO

Loss function. As the baseline CL method, we selected DINO [2], a self-distillation method
that feeds multiple views of an image to two encoders. DINO reinterprets the embeddings
as the logits of a clustering model, defined by a set of learned “prototypes.” DINO’s loss
function is defined as

L (z,2) =H(P(z),P (7)), (1)

where H(a,b) = —alogb. Given an input image x, the auxiliary head’s output probability
distributions over k dimensions are denoted as P and P’. They are obtained by softmax
normalization as

o exp(?/1)
O el ) ”
Py — _exp(@ —o)/7) .

B Zszl exp(z’<k> — 0)/1”7

where 7,7’ > 0 are the temperature parameters that control the sharpness of the output distri-
bution and o is a centering parameter that prevents one dimension from dominating, thereby
preventing collapse.
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Figure 1: Overview of our method. fy be a ViT encoder with mask-guided attention bias and
fo, be a post-processed ViT student model encoder that does not take mask token vectors.

As post-processing for DINO with mask-guided attention bias in the second phase shown
in Fig 1, we used the loss function proposed by RoB [4]. This is defined as

Ly (z,,2) = H(P(z,),P(z)). &)

Note that Eq. (4) does not include a centering parameter as a collapse-preventing regulariza-
tion term. The implementation details of post-processing in the second phase use the same
settings as in the first phase.

Implementation details. Table | shows the implementation details of DINO alone and
DINO with mask-guided attention bias in the first phase shown in Fig 1. We basically fol-
low Caron et al. [2], except that we changed the base learning rate to 2.5e-3, five times the
original rate for ImageNet100. We use the linear [r scaling rule [5]: Ir = base_Ir x %.
For training stability, we froze the mask-guided attention bias parameters during the first
100 epochs as a warm-up. Tables 3 and 5 show the evaluation settings for linear probing
and full-data fine-tuning, which are same as in Caron et al. [2]. For the settings of 1% and
10% labeled data fine-tuned evaluations as few-shot image recognition, we basically follow
Semi-ViT in the context of semi-supervised learning [1].

A2 MAE

Loss function. For the baseline MIM method, we selected MAE [6], which features com-
putational efficiency and state-of-the-art performance in a wide range of downstream tasks.
The MAE loss function is defined as

Lmim(zpred Xmasked) — MSE(zpred Xmasked) (3)
where z""“ is output from an auxiliary decoder.
Implementation details. Table 2 shows the implementation details for MAE alone and

MAE with mask-guided attention bias in the first phase shown in Fig 1. We used the same
settings as in He ef al. [6]. Unlike DINO with mask-guided attention bias, we did not initially
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freeze the mask-guided attention bias parameters as warm-up. Note that we set the mask
size to 2 X 2 token size in the pretraining with ViT/8 [7]. Tables 4 and 6 show the evaluation
settings for linear probing and full-data fine-tuning, which are the same as in He et al. [6].
For the settings of 1% and 10% labeled data fine-tuned evaluations, we used the same settings
as Semi-ViT [1].

Setting Value

Optimizer AdamW [9]

Batch size 512

Base learning rate 2.5e-3

Warmup epochs 10

Learning rate schedule | cosine schedule [8]

Weight decay 0.04t0 0.4

Teacher temp 0.04 t0 0.07

Momentum teacher 0.996 to 1

Augmentation RandomResizedCrop, Color Jittering,
Gaussian Blur, Solarization,
RandomHorizontalFlip

Table 1: DINO Pretraining settings

Setting Value

Optimizer AdamW

Base learning rate 1.5e-4

Optimizer momentum | fi,B =0.9,0.95
Batch size 4096

Learning rate schedule | cosine schedule
Warmup epochs 40

Augmentation RandomResizedCrop
Masking ratio 0.75

Masking strategy Random

Table 2: MAE Pretraining settings

Setting Value

Optimizer SGD

Base learning rate le-3

Optimizer momentum | 0.9

Batch size 256

Learning rate schedule | cosine schedule

Training epochs 100

Augmentation RandomResizedCrop,
RandomHorizontalFlip

Table 3: DINO Linear probing settings
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Setting Value

Optimizer LARS [11]

Base learning rate 0.1

Weight decay 0

Optimizer momentum | 0.9

Batch size 16384

Learning rate schedule | cosine decay
Warmup epochs 10

Training epochs 90

Augmentation RandomResizedCrop

Table 4: MAE Linear probing settings

Setting Value
Optimizer AdamW
Base learning rate le-4
Weight decay 0.05

Optimizer momentum
Layer-wise learning rate decay
Batch size

Learning rate schedule
Warmup epochs
Training epochs
Augmentation

Label smoothing [10]
Mixup [13]

Cutmix [12]

Drop path

Random erasing [14]

B1,B2 =10.9,0.999
0.65

256

cosine decay

5

100

RandAug (9, 0.5) [3]
0.1

0.8

1.0

0.1

0.25

Table 5: DINO Full-data fine-tuning settings

Setting Value

Optimizer AdamW

Base learning rate le-3

Weight decay 0.05

Optimizer momentum B1,B> =0.9,0.95
Layer-wise learning rate decay | 0.75

Batch size 1024

Learning rate schedule cosine decay
Warmup epochs 5

Training epochs 100
Augmentation RandAug (9, 0.5)
Label smoothing 0.1

Mixup 0.8

Cutmix 1.0

Drop path 0.1

Table 6: MAE Full-data fine-tuning settings
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