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A Training Details

A.1 DINO
Loss function. As the baseline CL method, we selected DINO [2], a self-distillation method
that feeds multiple views of an image to two encoders. DINO reinterprets the embeddings
as the logits of a clustering model, defined by a set of learned “prototypes.” DINO’s loss
function is defined as

Lcl(z,z′) = H(P(z),P′(z′)), (1)

where H(a,b) = −a logb. Given an input image x, the auxiliary head’s output probability
distributions over k dimensions are denoted as P and P′. They are obtained by softmax
normalization as

P(z)(i) =
exp(z(i)/τ)

∑
K
k=1 exp(z(k)/τ)

, (2)

P′(z′)(i) =
exp((z′(i)−o)/τ ′)

∑
K
k=1 exp(z′(k)−o)/τ ′

, (3)

where τ,τ ′ > 0 are the temperature parameters that control the sharpness of the output distri-
bution and o is a centering parameter that prevents one dimension from dominating, thereby
preventing collapse.
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Figure 1: Overview of our method. fθ be a ViT encoder with mask-guided attention bias and
fθs be a post-processed ViT student model encoder that does not take mask token vectors.

As post-processing for DINO with mask-guided attention bias in the second phase shown
in Fig 1, we used the loss function proposed by RoB [4]. This is defined as

Lkd
cl (zs,z) = H(P(zs),P(z)). (4)

Note that Eq. (4) does not include a centering parameter as a collapse-preventing regulariza-
tion term. The implementation details of post-processing in the second phase use the same
settings as in the first phase.

Implementation details. Table 1 shows the implementation details of DINO alone and
DINO with mask-guided attention bias in the first phase shown in Fig 1. We basically fol-
low Caron et al. [2], except that we changed the base learning rate to 2.5e-3, five times the
original rate for ImageNet100. We use the linear lr scaling rule [5]: lr = base_lr× batchsize

256 .
For training stability, we froze the mask-guided attention bias parameters during the first
100 epochs as a warm-up. Tables 3 and 5 show the evaluation settings for linear probing
and full-data fine-tuning, which are same as in Caron et al. [2]. For the settings of 1% and
10% labeled data fine-tuned evaluations as few-shot image recognition, we basically follow
Semi-ViT in the context of semi-supervised learning [1].

A.2 MAE
Loss function. For the baseline MIM method, we selected MAE [6], which features com-
putational efficiency and state-of-the-art performance in a wide range of downstream tasks.
The MAE loss function is defined as

Lmim(zpred ,xmasked) = MSE(zpred ,xmasked), (5)

where zpred is output from an auxiliary decoder.

Implementation details. Table 2 shows the implementation details for MAE alone and
MAE with mask-guided attention bias in the first phase shown in Fig 1. We used the same
settings as in He et al. [6]. Unlike DINO with mask-guided attention bias, we did not initially
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freeze the mask-guided attention bias parameters as warm-up. Note that we set the mask
size to 2×2 token size in the pretraining with ViT/8 [7]. Tables 4 and 6 show the evaluation
settings for linear probing and full-data fine-tuning, which are the same as in He et al. [6].
For the settings of 1% and 10% labeled data fine-tuned evaluations, we used the same settings
as Semi-ViT [1].

Setting Value
Optimizer AdamW [9]
Batch size 512
Base learning rate 2.5e-3
Warmup epochs 10
Learning rate schedule cosine schedule [8]
Weight decay 0.04 to 0.4
Teacher temp 0.04 to 0.07
Momentum teacher 0.996 to 1
Augmentation RandomResizedCrop, Color Jittering,

Gaussian Blur, Solarization,
RandomHorizontalFlip

Table 1: DINO Pretraining settings

Setting Value
Optimizer AdamW
Base learning rate 1.5e-4
Optimizer momentum β1,β2 = 0.9,0.95
Batch size 4096
Learning rate schedule cosine schedule
Warmup epochs 40
Augmentation RandomResizedCrop
Masking ratio 0.75
Masking strategy Random

Table 2: MAE Pretraining settings

Setting Value
Optimizer SGD
Base learning rate 1e-3
Optimizer momentum 0.9
Batch size 256
Learning rate schedule cosine schedule
Training epochs 100
Augmentation RandomResizedCrop,

RandomHorizontalFlip
Table 3: DINO Linear probing settings
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Setting Value
Optimizer LARS [11]
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 16384
Learning rate schedule cosine decay
Warmup epochs 10
Training epochs 90
Augmentation RandomResizedCrop
Table 4: MAE Linear probing settings

Setting Value
Optimizer AdamW
Base learning rate 1e-4
Weight decay 0.05
Optimizer momentum β1,β2 = 0.9,0.999
Layer-wise learning rate decay 0.65
Batch size 256
Learning rate schedule cosine decay
Warmup epochs 5
Training epochs 100
Augmentation RandAug (9, 0.5) [3]
Label smoothing [10] 0.1
Mixup [13] 0.8
Cutmix [12] 1.0
Drop path 0.1
Random erasing [14] 0.25
Table 5: DINO Full-data fine-tuning settings

Setting Value
Optimizer AdamW
Base learning rate 1e-3
Weight decay 0.05
Optimizer momentum β1,β2 = 0.9,0.95
Layer-wise learning rate decay 0.75
Batch size 1024
Learning rate schedule cosine decay
Warmup epochs 5
Training epochs 100
Augmentation RandAug (9, 0.5)
Label smoothing 0.1
Mixup 0.8
Cutmix 1.0
Drop path 0.1

Table 6: MAE Full-data fine-tuning settings
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