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In this supplementary, we first provide more ablation studies in Sec. ??. Then, more
visualizations of comparison results and predicted route map are shown in Sec. ??

1 Ablation Study
Design of ContextNet. To explore down-sampling scale of pyramid architecture within

ContextNet, we try two designs of ContextNet. As shown in Fig. ??, ContextNet v1 (our
default choice) outputs the same original resolution features for each level, using 4 convo-
lution layers without down-sampling. ContextNet v2 generates pyramid features through
4 convolution blocks with [2,2,4,4] downscale. Tab. ?? shows ContextNet v1 helps static
VFI(w/o APR) achieves the best accuracy, but cannot maintain competitive performance on
X-2K under dynamic computation. We analysis that APR skip some important regions for
X-2K interpolation.

model ContextNet X-2K X-"4K"

Ours (w/o APR) ContextNet v1 (default) 36.67/0.967 34.02/0.946
ContextNet v2 36.61/0.967 33.94/0.946

Ours (with APR) ContextNet v1 (default) 36.46/0.966 33.90/0.944
ContextNet v2 36.50/0.966 33.86/0.944

Table 1: Ablations on different ContextNet designs. Detailed structures are shown in Fig. ??.

Necessity of Alignment-aware Patch-level Routing. Instead of using predicted route
map from APR, we also try to remove APR and directly adopt the reference route map for
synthesis network during inference progress. The results in Tab. ?? show performance of VFI
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Figure 1: Two designs of context network.

Routing
Module

batch
size

Vimeo90k X-2k X-"4K"

PSNR/SSIM keep ratio PSNR/SSIM keep ratio PSNR/SSIM keep ratio
1 35.78/0.979 49% 36.45/0.966 50% 33.88/0.944 50%

Route
Label

Generation

4 35.80/0.979 50% OOM OOM OOM OOM
8 35.81/0.979 50% OOM OOM OOM OOM

16 35.81/0.979 50% OOM OOM OOM OOM
64 35.82/0.980 50% OOM OOM OOM OOM

APR (ours) 35.82/0.980 48% 36.46/0.966 46% 33.90/0.944 51%
Table 2: Ablations on different version of routing module. Keep ratio means percentage of patch feeding into refine
block (instead of copy) in synthesis network. OOM means out of memory.

guided by reference map is slightly lower than VFI with APR predicted on Vimeo90K and
X-"4K". Moreover, the reference route map would be influenced by batch size, leading to
unstable interpolation results. Therefore, training an Alignment-aware Patch-level Routing
Module is essential for dynamic VFI.

Effects of Training Strategy. We adopt 3-stage training strategy and freeze optical flow
network during the last two stages. The comparison results in Tab. ?? report that training all
model components in one step slightly degrades performance (line 2). Meanwhile, freezing
optical flow network brings improvement because it prevents estimated flow network from
being disrupted by significant increased loss due to APR.

Effects of APR Loss Ratio. APR loss ratio controls the tolerance of distance between
APR predicted route map with pre-defined reference route map. In Tab. ??, a smaller APR
loss ratio provides a loose constraint to APR module, encouraging more patches (more com-
putation) to be convolved in synthesis network. When APR loss ratio = 0, APR-VFI would
degrade to static VFI, because choosing all patches is the easiest method to improve perfor-
mance. In our experiments, we choose 0.01, because it achieves the best trade-off on Xiph.

Performance on Vimeo90k. Vimeo90k is not our focus, but we provides our corre-
sponding performance and FLOPs in Tab. ??. Our dynamic APR-VFI surpasses dynamic
VFI UGSP [? ] by 0.1db. Our static VFI(w/o APR) achieves similar performance with
FILM [? ] and EBME-H [? ]. However, we do not outperform IFRNet large [? ], ABME [?
] and Softsplat [? ]. In the future, we will optimize model architecture to improve perfor-
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curriculum
training

freeze optical
flow network X-2k X-4k

✓ 36.38/0.965 33.81/0.943
✓ 36.44/0.966 33.88/0.944

✓ ✓ 36.46/0.966 33.90/0.944
Table 3: Ablations on training strategy

APR
loss ratio

X-2k X-4k

PSNR/SSIM keep ratio PSNR/SSIM keep ratio
1 36.45/0.965 38.66% 33.85/0.943 40.63%

0.1 36.45/0.965 42.23% 33.85/0.944 46.44%
0.01 36.46/0.966 46.11% 33.90/0.944 50.63%

0.001 36.59/0.966 79.01% 33.95/0.945 83.33%
Table 4: Ablations on different APR loss ratios. Keep ratio means percentage of patch feeding into refine block
(instead of copy) in synthesis network.

Model Vimeo90k GFLOPs
ABME [? ] 36.18/0.981 161.7
CAIN [? ] 34.65/0.973 167.1
SepConv [? ] 33.79/0.970 109.9
SuperSloM [? ] 34.35/0.957 156.7
AdaCoF [? ] 34.47/0.973 44.6
DAIN [? ] 34.71/0.976 702.1
FILM [? ] 36.06/0.970 250.2
EBME-H [? ] 36.06/0.980 55.9
SoftSplat [? ] 36.10/0.980 114.2
IFRNet large [? ] 36.20/0.981 101.1
Ours (w/o APR) 36.05/0.980 96.7
UGSP [? ] 35.72/- 21.0
Ours (with APR) 35.82/0.980 63.9

Table 5: Model performance on Vimeo90K. "-" means corresponding data is unavailable. The FLOPs is measured
with 256×448 resolution. Noted that Vimeo90k is not our focus, we focus on large motion dataset.

mance.

2 Visualization Result
Comparison of Model Results. We provide more visualization results on Xiph dataset in

Fig. ??. It shows that our method provides the best visual effects.
Route Map. The Fig. ?? shows the predicted route map from APR. Large motion regions

would pass through more layers.
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Overlay Ours IFRNet AdaCof CAIN EBME FILM GT 

Figure 2: Comparison results on X-2k.

Overlay Depth=1 Depth=2 Depth=3 Depth=4 

Figure 3: Visualization of route map predicted by APR. The green masks at different depths represent the patches
passing through corresponding refine block.
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