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Abstract

Existing dynamic Video Frame Interpolation (VFI) methods either struggle to pro-
duce satisfactory results on high-resolution videos due to the lack of explicit image warp-
ing, or fail to achieve practical speedup due to the use of inefficient sparse convolution.
In this work, we propose a novel dynamic VFI architecture that combines image warping
and patch-wise processing: the warping operation can compensate for the large motion in
high-resolution videos, while patch-wise dynamic processing can be implemented with
efficient regular convolution. Specifically, we develop an Alignment-aware Patch-wise
Routing module to select the adaptive sub-networks to synthesize target patches from lo-
cal patches in warped input frames. Extensive experiments demonstrate that our dynamic
VFI method can achieve excellent results on 2K and 4K videos, saving considerable
amount of computation and runtime with marginal performance degradation.

1 Introduction
Video frame interpolation (VFI) aims to synthesize intermediate frames between consecutive
frames, thereby enhancing the temporal resolution and enriching the visual contents. VFI is
widely used in various real-world applications, including video generation [45], video edit-
ing [10], video compression [44], etc. Despite recent advances in performance, current VFI
methods still encounter difficulties in addressing complex and large motion cases (which
are common in high-resolution videos), and have limited flexibility and heavy computa-
tional burden for practical deployment. In particular, a common limitation is the uniform
computation in synthesizing different image regions. It overlooks the varying interpolation
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difficulties across different frame regions, leading to redundant computation in areas with
minimal motion or clear content.

Recently, a few adaptive approaches are proposed to assign varying amount of compu-
tation for different image regions [2, 6]. Choi et al. [6] integrate a specialized module to
decide patch-level input scale and model depth, dynamically synthesizing each patch with
appropriate resolution and sub-network. Despite about 50% reduction in FLOPs, this method
does not integrate image warping into the dynamic architecture to compensate for large mo-
tion. As a result, the synthesis network in [6] directly aligns the pixels (possibly with large
displacement) in original input frames, leading to inferior performance for high-resolution
videos. Cheng et al. [2] learn pixel-level uncertainty, and employ a spatial pruning method
based on sparse convolution [25] to skip redundant computation on pixels with low uncer-
tainty. Although it reduces theoretical FLOPs, the practical speedup on GPUs is constrained,
as pixel-wise sparse convolution is unfriendly for parallel processing.

To address aforementioned limitations, we propose a novel dynamic architecture for
VFI. It integrates image warping with a dynamic synthesis network, and performs effi-
cient patch-level (rather than pixel-level) dynamic computation. It follows the main steps
in forward-warping-based VFI: estimating the bi-directional flow between input frames,
forward-warping input frames towards the target frame, and then predicting the target frame
from warped frames with a synthesis network. Our key innovation is an Alignment-aware
Patch-level Routing (APR) module, which is inserted before the synthesis network, and can
select appropriate sub-synthesis-networks for different warped input patches based on the
alignment between them. Furthermore, our synthesis network takes warped image patches
(rather than unwarped patches [6]) as input, and its lightweight yet highly modularized net-
work design allows dynamic computation and efficient feature fusion. Coupling these de-
signs, our APR-VFI method can reliably handle large motion, and achieve practical speedup
for high-resolution videos.

Our contributions can be concluded as follows:

• We propose an Alignment-aware Patch-level Routing (APR) module to adaptively de-
termine the inference path in the synthesis network for each image patch.

• We design a dynamic VFI framework based on APR, with a specially designed syn-
thesis network that takes warped image patches as input.

• In comparison with baseline model without APR, our APR-VFI achieves competi-
tive performance on 2K and 4K Xiph benchmark, saving up to 30% FLOPs and 20%
runtime with marginal performance degradation.

2 Related work
Video Frame Interpolation. Most VFI methods can be roughly categorized into kernel-

based, flow-based and diffusion-based. Kernel-based methods [3, 4, 9, 23, 33, 34] interpo-
late intermediate frames by learning adaptive kernels and adopting separable convolutions
on input frames without explicit motion estimation. Although these methods are relatively
effective, without explicit image warping they can hardly deal with large motions, given the
limited receptive field of learned convolutional kernels. Flow-based methods [18, 30, 35]
firstly estimate the optical flow between input frames, and then leverage estimated flow to
explicitly guide the synthesis of intermediate frame. In particular, Kong et al. [21] present
an efficient encoder-decoder network for efficient frame interpolation. This network refines
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Figure 1: Overview of Alignment-aware Patch-level Routing for Dynamic VFI (APR-VFI) architecture. APR-VFI
contains an optical flow network for motion estimation, a context network for context feature extraction, and an APR
equipped synthesis network for frame prediction. APR predicts a route map and feeds it into synthesis network as a
guidance. Ĩ0 and Ĩ1 indicate warped image 0 and 1. F0→1 and F1→0 denote the estimated bi-directional flow between
input frames I0 and I1

optical flow together with intermediate feature until generating the desired result. Despite
improved efficiency, it can hardly generalize well from small motion datasets to extremely
large motion datasets.

Recently, diffusion models [13, 39] have exhibited remarkable progress in generating
high-fidelity and diverse images, and some works also explored its potentials in VFI field.
MVCD [41] integrates neighboring frames as condition in a devised convolutional U-net to
implicitly learn spatio-temporal dynamics. In contrast, MADIFF [16] explicitly captures the
inter-frame motion hints (by an events simulator [48]) as auxiliary guidance for interpola-
tion. To better adapt LDMs to VFI, LDMVFI [8] proposes a novel VFI-specific auto-encoder
integrating enhanced feature interaction during reconstruction progress. Instead of revising
architecture, VIDIM [40] cascades two standard diffusion models, where a base model gen-
erates low resolution results and a super-resolution model upsamples to large resolution.
However, these methods are relative slow since progressive denoising procedure.

Dynamic network. Many vision tasks have employed dynamic architectures to allocate
different amount of computation for different inputs. These methods can be divided into two
groups: spatial-wise and sample-wise [11]. Spatial-wise dynamic networks perform adaptive
operations on different image regions, such as changing model depth with early exit [42],
adaptively skipping some middle layers [14, 15, 26] and adjusting the input resolution [6].
In contrast, sample-wise networks formally switch model architecture [22, 47] or change
parameters [12, 49] for different samples. In this work, we propose a spatial-wise network
that selects adaptive inference path for each image patch to achieve good trade-off between
efficiency and accuracy.

3 Method
In this section, we firstly introduce our APR-VFI pipeline (Sec.3.1), then elaborate the key
components in APR-VFI (Sec.3.2), and describe our training strategies (Sec.3.3).
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3.1 Overall Pipeline
Given two frames I0 and I1, VFI aims to synthesize the intermediate frame It , where t ∈ (0,1).
As illustrated in Fig.1, we use an optical flow network for motion estimation. Meanwhile,
a context network captures multi-level context features of input frames. The original input
frames and their context features are forward-warped towards the target frame before feeding
to APR-based synthesis network for frame interpolation. Formally, let F0→1 and F1→0 denote
the estimated bi-directional flow between input frames I0 and I1, and linear scaling can be
used to approximate the motion from I0 and I1 to target It . Let

−→
W denote forward-warping

(average splatting), then the warped images Ĩ0 and Ĩ1 can be calculated as Eq.(1). Warping
context features follows the same procedure.

Ĩ0 =
−→
W (t ·F0→1, I0), Ĩ1 =

−→
W ((1− t) ·F1→0, I1) (1)

Our synthesis network composed of several successive refine blocks for iterative patch-
wise feature refinement (similar in spirit but different in structure with IFRNet [21]). By
integrating APR module, each refine block can adaptively process a subset of informative
patches, instead of processing all patches (shown in Fig.2). Then, all refined features are
fused together, and a convolution layer takes the fused feature to predict a mask M for com-
bining the warped images (Ĩ0 and Ĩ1), and a residual image △It for further refinement. Fi-
nally, the final interpolated image is calculated as follow:

It = M× Ĩ0 +(1−M)× Ĩ1 +△It (2)

3.2 Model Components
The key model components in our APR-VFI pipeline include an optical flow estimator, a
context network and an APR-based dynamic synthesis network. In particular, we follow the
motion estimator in [20] to calculate bi-directional motions between input frames.

Context Network. The context network extracts multi-level context features of input
frames, using several convolution layers. However, our context network is different with
previous pyramidal context network [20]. To accommodate with APR-based synthesis net-
work that operates on fixed resolution, we do not down-sample features, and reduce the
number of feature channels to release computation burden.

Alignment-aware Patch-level Routing(APR). Our APR predicts a multi-level route
map that determines the synthesis path of each image patch. We assume that image content
complexity and temporal derivations play a key role in route planning. Therefore, APR
(in Fig. 2) takes concatenated warped image difference, estimated flow and warped images
as input, and convolves them to extract spatiotemporal features. To ensure each pixel of
route map corresponding to path of one image patch, we apply two pooling methods to
simultaneously downscale spatiotemporal features from (B,C,H,W) into (B,C, nh,nw), where
nh,nw are patch number across height and width. Two pooling methods enhance feature
representation. Subsequently, a linear layer predicts the possibility of each patch feeding into
each stage of synthesis network. In addition, to make our APR-VFI end-to-end trainable, we
follows [7] to use the Straight-Through Gumbel-Softmax trick [17] in training and applying
the argmax operation at test time. Our APR only has 5.13k parameters, and introduces little
computational cost for whole pipeline.
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Figure 2: Structure of different model components.

Here, we would like to highlight the differences between our APR module and the SD-
finder in [7] ("S" indicates scale, and "D" indicates depth). Firstly, our APR module does
not predict the scaling factor, and eliminates the need of a super resolution for further re-
finement. Second, our design of APR aims to predict the route map, mainly based on the
alignment between warped patches. This design stems from our intuition that if the warped
input patches have been aligned well with each other, the synthesis network should be easily
predict the target patch from warped patches.

Synthesis Network. Our synthesis network mainly consists of 5 refine blocks, which
progressively refines intermediate feature from coarse-to-fine. In particular, We define the
first refine block as static block that is always applied for all patches, as good initial interme-
diate feature is helpful for maintaining performance under reduced computation.

As shown in Fig. 2, our refine block uses a simple encoder-decoder structure for fea-
ture refinement. We compare APR-based dynamic synthesis network (Fig. 1) with its static
counterpart (Fig. 2). Static synthesis network infers with all image patches (equivalent to full
image), while dynamic synthesis network divides feature into to a grid of nh × nw patches
and dynamically selects a subset for refinement. As mentioned before, APR predicts a bi-
nary multi-level route map M ∈ Rnh×nw×d , which indicates the dynamic inference path in
synthesis network for all image patches. Here, nh and nw are the numbers of patches across
height and width, while d means the number of dynamic blocks in synthesis network. For
a route vector vk

pi
∈ M, where i represents the index of patch. vk

pi
= 1 means patch pi will

go through the kth refine block, while 0 means pi will skip this block by directly inheriting
the corresponding features from preceding refine block. Let us denote the warped kth stage
context features of patch i as f̃ k

pi0
and f̃ k−1

pi1
and its corresponding route vector as vk

pi
. The

output feature f k
pi

of kth refine block ϕk is calculated as:

f k
pi
=

{
ϕk( f̃ k

pi0
, f̃ k

pi1
, f k−1

pi
) if vk

pi
= 1

f k−1
pi

if vk
pi
= 0

(3)

In [34], the authors studied the effect of self-ensembling methods in VFI, and concluded
that any form of self-ensembling is superior to a single prediction. Therefore, we propose a
simple but effective method to fuse output features from 5 refine blocks for final prediction:
adding all refined features together and normalizing the result in channel dimension.
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Figure 3: Pipeline of reference route map generation. The luminance of third image reflects the difference magni-
tude, where bright region means large difference.

3.3 Training
Objective Functions. We use three types of loss: reconstruction loss Lrec, census loss [28]

Lcen and APR loss Lapr. Reconstruction loss is Charbonnier distance between our interpo-
lation It and ground truth IGT

t . For APR loss, we generate a route label M
′ ∈ Rnh×nw×d as

ground truth (described later in 3.3) and compute L1 distance between M
′
and predicted route

map M. Finally, our loss is weighted sum of reconstruction loss, census loss and APR loss,
as in Eq. (4). By default, we set λ1 = 0.1 and λ2 = 0.01.

L = Lrec(It , IGT
t )+λ1Lcen(It , IGT

t )+λ2 ×Lapr(M
′
,M) (4)

Curriculum training. End-to-end learning of all components at once leads to unstable
training. Therefore, we train APR-VFI with 3 training stages: 1) pretrain the static APR-
VFI with whole images; 2) freeze optical flow network and train static APR-VFI with image
patches of 64×64; 3) freeze optical flow network and jointly train context network, synthesis
net with APR. Freezing optical flow network in step 3 is crucial for model coverage, since
significantly increased reconstruction loss in this stage is mainly caused by the introduction
of APR but not inaccurate flow. We provide more information of objective functions in
supplementary material.

Generation of reference route map M
′ . To train APR module, we adopt a simple

heuristic rule to generate reference route map M
′

as supervision and experiments show that
M

′
helps routing module estimate accurate path. Fig. 3 visualizes the procedure of reference

route map generation.
Firstly, we define the patch keeping ratio for d dynamic blocks as [kr1,kr2, ...,krd ], in-

dicating the percentage of patches being processed at a certain stage. The default value is
[0.1,0.4,0.6,0.9]. Then, we generate reference route map M

′ ∈ Rnh×nw×d as follows:

1. Compute difference between warped images but ignoring difference in hole region
(Mhole) around warped image edge. The hole region brought by warp operation has
significant difference but can be easily reconstructed with few computation.

2. Split difference map from step 1 into nh ×nw patches and estimate patch difference in
Eq.(5). The kernel size of MaxPool and AvgPool is (16,16) and (4,4).

Pdi f f = MaxPool(AvgPool((Ĩ0 − Ĩ1)∗Mhole)) (5)

3. Sort the Pdi f f in an ascending order. For the 1st dynamic block, we generate m
′
1 ∈

Rnh×nw×1 by annotating top kr1 patches as 1 (pass), and remaining patches as 0 (exit).

4. Follow step 3 until the last dynamic block, and concatenate [m
′
1,m

′
2, ...,m

′
d ] as M

′
.
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Extra
Dataset

Xiph-2k Xiph-"4k" Para.
(M)PSNR/SSIM GPU Runtime(s) TFLOPs PSNR/SSIM GPU Runtime(s) TFLOPs

ToFlow [46] - 33.93/0.922 - - 30.74/0.856 - - 1.4
BMBC [36] - 32.82/0.928 4.025 5.900 31.19/0.880 4.025 5.900 11.0
ABME [37] - 36.53/0.944 0.907 3.120 33.73/0.901 0.907 3.120 18.1
SepConv [32] - 34.77/0.929 0.078 2.078 32.06/0.880 0.078 2.078 19.8
SuperSloMo [19] - 33.88/0.925 0.087 2.957 31.99/0.880 0.087 2.957 1.15
AdaCoF [24] - 34.86/0.928 0.069 0.848 31.68/0.870 0.069 0.848 21.8
DAIN [1]

√
35.95/0.940 1.154 13.221 33.49/0.895 1.154 13.221 24.0

FILM [38] - 36.66/0.951 0.161 4.706 33.78/0.906 0.161 4.706 34.4
EBME-H [20] - 36.62/0.967 1.086 0.095 33.93/0.945 1.086 0.095 3.9
SoftSplat [31]

√
36.62/0.967 0.223 2.150 33.93/0.946 0.223 2.150 12.2

IFRNet large [21] - 36.63/0.966 0.081 1.960 33.58/0.944 0.081 1.960 19.7
CAIN [5] - 35.21/0.937 0.189 3.133 32.56/0.901 0.021 3.133 42.8
CAIN-SD [7]

√
34.68/0.924 0.199 1.600 32.92/0.893 0.203 1.983 -

Ours(w/o APR) - 36.67/0.967 0.143 1.730 34.02/0.946 0.143 1.730 2.2
Ours(with APR) - 36.46/0.966 0.116 1.220 33.90/0.944 0.123 1.271 2.2

Table 1: Evaluation results on Vimeo90K and Xiph. Computational complexity is measured in TFLOPs and GPU
Time(s), and performance measured in PSNR and SSIM. "-" means the corresponding data is unavailable. Ours(with
APR) represent proposed APR-VFI, while Ours(w/o APR) denotes the same model architecture but removing APR.

4 Experiments

Implementation Details
Training Details. We use Vimeo90K [46] to train the interpolation model from scratch.

The batch size is 32 and data argumentation such as random flip, rotation, temporal reversal
etc., are performed in training process. We choose AdamW [27] as the optimizer with β1 =
0.9, β2 = 0.999 and weight decay 1e−4. The iteration numbers at 3 training stages are 800k,
200k and 200k. In first 2000 steps of each stage, we warm up the learning rate to 2e−4 and
then use cosine annealing for remaining steps to reduce learning rate from 2e−4 to 2e−5. Our
model is trained and tested on a NVIDIA A100.

Evaluation Metrics and Datasets
Standard PSNR and SSIM [43] are adopted for performance evaluation. For computation
complexity and inference speed, we calculate FLOPs and GPU runtime on 2048× 1080.
Our model is evaluated on the following datasets:
Xiph [29]: Following the settings in [7], we use the downsampled version as Xiph-2K and
the center-cropped version as Xiph-"4K". Although both their resolution is 2048×1080,
Xiph-"4K" keeps the original motion magnitude of 4K (4096×2160) images.
Vimeo90K [46]: It contains frame triplets of 256×448 resolution. This dataset is not our
main focus, because its flow magnitude is relatively small. We report corresponding perfor-
mance in Sec.4

Comparison to the State-of-the-arts
In this section, we compare APR-VFI and its static version (a model shares the same model
structure with APR-VFI but removing APR.) with various state-of-the-art VFI methods, and
analyze our model performance.

Quantitative Evaluation. Tab. 1 shows comparison results on Xiph. We report two
versions of model results; static VFI (w/o APR) infers with complete procedure and adaptive
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Overlay Ours IFRNet AdaCof CAIN EBME FILM GT 

Figure 4: Visual comparison on Xiph-4k.

VFI (with APR) shortens inference path of easy regions to enable better efficiency. The
static VFI (w/o APR) achieves the best results in Xiph-2K and Xiph-"4K". It outperforms
IFRNet-large by 0.03db in Xiph-2K and 0.44db in Xiph-"4K" with less FLOPs and 8×
fewer parameters. In contrast with FILM which is designed for large motion, we perform
significant (0.24db) superiority on Xiph-"4K". The recent EBME-H utilizes the explicit
forward warping, but still falls behind us on Xiph-"4K". We attribute the reason to the feature
fusion in synthesis network which provides complementary features for large motion.

For APR-VFI, we compare it with another adaptive VFI method CAIN-SD. Noticing
that CAIN-SD measures runtime on RTX6000, we linearly estimate its runtime on A100
according to capability difference. We surpass CAIN-SD by a large margin and run 1.6×
faster with less FLOPs. Although CAIN-SD can reduce more FLOPs while achieving higher
performance, it introduces extra training dataset to learn large motion estimation. With help
of APR, APR-VFI saves 30% and 26% TFLOPs of its complete procedure (ours w/o APR)
on Xiph-2K and Xiph-"4K" with minimal performance degradation.

In addition, our VFI (w/o APR) achieves 36.05 on Vimeo90K and the APR module saves
34% of computational cost with 0.2db degradation. The performance on Vimeo90k is not
our focus, but we provides related results in supplementary material.

Qualitative Evaluation. Fig. 4 provides visual comparisons between APR-VFI and
other VFI methods on Xiph. It can be seen that our model can interpolate large and complex
regions with pleasant results. Our framework shows a superior visual experience within
enlarged bounding box, while other models suffer from ghost and blur artifacts when objects
move fast.

We visualize predicted inference path from APR in Fig. 5. The regions (white T-shirts,
blank sky, empty floor) with minor difference or clear context get fewer synthesis process-
ing while difficult regions (women face, fast moving sticks) tend to pass through more fine
refinement. Thanks to accurate inference path, we preserve model capability on complex
regions while save redundant computation on easy regions.
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Overlay Depth=1 Depth=2 Depth=3 Depth=4 

Figure 5: Visualization of route map predicted by APR. The green masks at different depths represent the patches
passing through corresponding refine block.

5 Ablation Study
Effects on Patch Size. Patch size is an important parameter for APR-VFI. We first study

its effects in static VFI and choose an appropriate setting for APR-VFI. Tab. 2 shows that
smaller patch size causes worse performance. The accuracy of model with patch size 8× 8
is considerably lower than 128×128, although the FLOPs is same. We analyze that splitting
images into smaller patches will lead to loss of global information, and synthesis network
may not be able to interpolate good results with limited context. Finally, We choose patch
size of 64 instead of 128, because if the patches are too large the number of patches will be
reduced, which is not conducive to route module training.

Patch Keeping Ratio. Patch Keeping Ratio is important in balancing efficiency and
accuracy by restricting the number of processing patches for each refine block. We compare
different settings in Tab. 3. The results shows gradually increasing the patch keeping ratio
with model depth is appropriate for our architecture. We analyze that the prediction layer is
supervised to fit well with output feature from the last refine block. Keeping more patches
at deeper blocks can reduce feature distribution gap caused by changing inference path. We
find [0.2, 0.5, 0.7, 1.0] setting introduces more computational cost than [0.1, 0.4, 0.6, 0.9]
without obvious improvement on X-"4K". It means computation under [0.1, 0.4, 0.6, 0.9]
setting achieves the best trade-off, selecting more patches would reduce efficiency.

Feature Fusion Methods. To vertify the effectiveness of our fusion method (add&norm),
we compare it with concat&conv operation (concatenate all features and perform convolu-
tion). As shown in Tab. 5, our method achieves more improvement on Xiph-"4k" without
extra parameter.

Supervision for APR. As mentioned in Sec.3.3, we generate reference route map to
guide APR learning optimal inference path. To prove its effectiveness, we study the effect of
different route maps on APR-VFI. We follow the same mechanism but using different types
of alignment information when generating route map (step 1). Tab. 4 shows warped image
difference achieves the best accuracy, since we warp images and features before feeding
them into synthesis network. It provides the most related alignment information for assigning
adaptive path. In addition, we analyze that reconstruction loss may misguide model focusing
on some high-frequency but well-aligned easy regions, which causes the lowest performance.
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We provide more ablation studies on supplementary material.

patch size X-2K X-"4K"
8 36.48/0.966 33.89/0.945
16 36.54/0.966 33.92/0.945
32 36.61/0.967 33.90/0.945
64 36.64/0.967 34.02/0.946

128 36.67/0.967 34.05/0.946

Table 2: Ablation on effects of patch size at patch-level
inference.

keep ratio Xiph-2K Xiph-"4K" TFLOPs
0.2 0.5 0.7 1.0 36.49/0.965 33.90/0.944 1.341
0.1 0.4 0.6 0.9 36.46/0.965 33.90/0.944 1.271
0.2 0.4 0.6 0.8 36.45/0.965 33.87/0.944 1.296
0.5 0.5 0.5 0.5 36.45/0.965 33.84/0.943 1.389
0.9 0.6 0.4 0.1 36.42/0.965 33.86/0.944 1.504

Table 3: Ablation on different keep ratio. Higher ratio
indicates more passing patches at corresponding stage.

supervised information X-2K X-"4K"
warped difference 36.46/0.9659 33.90/0.9442
image difference 36.42/0.9654 33.86/0.9435

reconstruction loss 36.42/0.9655 33.84/0.9436

Table 4: Ablation on different supervision for APR
training.

fusion method X-2K X-"4K"
add&norm 36.66/0.9672 34.02/0.9461

concat&conv 36.68/0.9672 33.97/0.9457
no fusion 36.64/0.9670 33.93/0.9456

Table 5: Ablation on different feature fusion methods.

6 Limitations and Future work
Although our proposed APR enables adaptive video frame interpolation, there are still some
limitations worth exploring. First, although APR could relieve computational cost, we still
have relative large FLOPs due to limited down-sampling operations. Second, adaptive infer-
ence path predicted by APR is restricted by pre-defined reference route map, which impairs
model flexibility. In future work, we will rethink synthesis network structure to save com-
putational resource. Meanwhile, we will also investigate effective training strategies without
explicit supervision for routing module.

7 Conclusion
In this work, we propose an Alignment-aware Patch-level Routing (APR) module and design
a compatible VFI architecture (APR-VFI). Our dynamic VFI adaptively interpolates image
patches through different sub-networks, saving redundant computation on easy regions and
preserving model capability on challenging regions. Meanwhile, we utilize a simple but ef-
fective feature fusion method to enhance feature representation. It shows that the proposed
APR-VFI achieves excellent performance on large motion dataset, saving considerable com-
putation with marginal performance degradation.
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