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Abstract

Predicting accurate movement trajectory is a challenging task due to the complex-
ity of human motion patterns and activity scenes. Existing studies focus on extracting
motion state information from trajectories but often overlook the representation of fu-
ture motion trends and interaction with the scene. We present a novel framework called
Motion-Scene-Goal Aware Network (MSGANet), which utilizes attention temporal con-
volutional networks to capture temporal dynamics in motion trajectories. Through self-
supervised learning, MSGANet extracts the spatial distribution of motion states. It in-
corporates multi-scale feature fusion and self-attention mechanisms to extract correlated
features between motion states and physical scenes, facilitating inference of goal inten-
tions’ spatial distribution. Additionally, MSGANet employs cross-attention mechanisms
to enable feature interactions between motion states and goal intentions. By integrating
scene semantic aware fusion and aware interaction of goal intentions, it enhances the
representation of motion state features for predicting future motion trends. Experiments
on ETH-UCY and SDD datasets prove the strength of our method.

1 Introduction
Human motion prediction is crucial for understanding human behavior and can be applied
across various domains such as social robots [21] and autonomous driving [5]. Due to the
influence of multimodal motion patterns, predicting human movement trajectories is a chal-
lenging task. According to social psychology [1], human movement is driven by intention
and influenced by interactions with the environment. Therefore, learning the associated rep-
resentation within motion states regarding scene interactions and intentions is of importance
for human movement prediction.
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Figure 1: Existing general framework of trajectory prediction and our MSGANet framework.
(a) Describing motion trajectories through motion state estimation. (b) Integrating scene
information understanding and goal intent derivation to enhance motion state learning.

Previous studies mainly model motion states through two paradigms. The first paradigm,
as shown in Figure 1 (a), models motion states directly from raw trajectory sequences [2,
12, 27, 51]. Although it can roughly capture motion states, it fails to uncover many deep
characteristics due to the subtle nature of human motion patterns, resulting in information
loss. The second paradigm uses high-dimensional space to intricately model motion states
[4, 24]. However, it overlooks the interaction among motion states, scene information and
motion intentions. This interaction can manifest as repulsion from scene edges and attraction
towards expected positions, thereby generating future motion trends. Consequently, it is
hard for the paradigm to accurately model motion states under the conditions of interaction
between scene and intentions.

To overcome these limitations, we propose the Motion-Scene-Goal Aware Network (MS-
GANet) model, as illustrated in Figure 1 (b). According to the research [3, 41], intent can
shape the kinematics of action, and conversely intent can be inferred from observed be-
havior. Inspired by this perspective, our method derives pedestrians’ destinations as goal
intentions by implementing interactions between the learned motion states and the scene se-
mantics. Simultaneously, the goal intention is used to reshape the representation of motion
states, guiding the prediction process of future motion trajectories from motion states fused
with scene context. Specifically, we utilize the Motion State Attention Temporal Convolu-
tional Network to extract temporal information from motion trajectories. Then the spatial
distribution of motion states is obtained based on self-supervised learning with the state log-
likelihood loss. Subsequently, we introduce the Motion-Scene Aware Transformer and the
Motion-Goal Aware Transformer. The former utilizes the self-attention module to extract
aware fusion features of motion state and scene information. The latter combines the cross-
attention module to embed goal intentions into the motion states. Furthermore, we propose
a reparameterized trajectory log-likelihood loss to precisely converge the goal-guided pre-
diction trajectory distribution. Experiments on ETH [28]-UCY [17] and SDD [29] datasets
verify the effectiveness and superiority of our approach.
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2 Related Work

Motion state learning. Studying the motion state information in trajectories can effectively
enhance the motion representation capability of features. Early approaches utilize latent
variables within RNN [2, 27, 39] for description. The subsequent research [26, 38] have
employed spatio-temporal graph models to transform the motion velocity into parameters of
Gaussian distributions to predict the trend direction of future trajectories. However, these
methods are limited by the lower-dimensional trajectories, lacking in-depth analysis of mo-
tion state representations. With the rise of self-supervised learning [10, 20], more studies
are turning to the use of different feature descriptors [4, 42] to analyze the motion states
within trajectories. Elevating the dimension of the motion states can address the issue of
information loss caused by sparse trajectory coordinate data. Nonetheless, the motion states
extracted by these methods are limited to the observed information. We enhance the repre-
sentation capability of future motion trends by integrating motion state learning with scene
understanding and interaction with goal intent.
Scene interaction and spatial probability estimation. Early approaches [6, 8, 37] en-
hance models’ representation ability of multimodal information by extracting scene features
and integrating them with trajectory features. Recent studies have employed cross-attention
[25, 50] and conditional attention mechanisms [33] to facilitate interaction between trajecto-
ries and scenes. However, these methods for multimodal feature fusion exhibit deficiency in
spatial alignment. Therefore, the studies [7, 9, 18, 19, 23] have proposed mapping trajecto-
ries onto graphs, aligning them with scenes, and predicting the spatial probability distribu-
tion of trajectories. Meanwhile, we promote the perception of global scene information by
leveraging self-attention-based motion-scene aware learning.
Goal intention driven approach. Many studies [15, 51] refine the state representation
based on interactions with the intentions of other pedestrians. Some subsequent studies
have focused on trajectory prediction driven by intention [11, 34, 36, 44, 46, 53], and goal
intention playing a prominent role. Some approaches [22, 23, 47, 49] adopt goal intentions as
latent variables and learn their distribution through generative models. Then these methods
sample multimodal trajectories guided by various goal intentions during inference, further
enhancing predictive performance. Our method differs in that we achieve the interaction
between motion states and goal intentions through cross-attention-based motion-goal aware
learning, then combine it to refine the trajectory prediction process guided by goals.

3 Approach

The proposed MSGANet is shown in Figure 2. Let x = {xt |t = 1,2, . . . , to} ∈ Rto×2 be the
observed trajectory of the pedestrian consisting of to frames. H ∈ Rh×w×3 is the scene image
with a height of h and a width of w. We firstly extract the spatial features of motion states by
the Motion State Distribution Learning module (MSDL). Subsequently, based on the Trans-
former model [40], the spatial features of motion states and scene semantics are fused using
the self-attention mechanism in the Motion-Scene Aware Learning module to generate the
spatial distribution of goal intention. Ultimately, the Motion-Goal Aware Learning module
combines the cross-attention mechanism to learn feature interactions between motion states
and goal intentions. And the interaction features are used to guide the prediction of the future
trajectory y = {yt |t = 1,2, . . . , t f } ∈ Rt f ×2 consisting of t f frames.
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Figure 2: Architecture of the proposed MSGANet.

3.1 Motion State Distribution Learning
To model the spatial distribution of movement trajectories, we conduct motion state distri-
bution learning implemented by Motion State Attention Temporal Convolutional Network
(MS-ATCN), which leverages self-attention mechanisms to extract temporal information
from the initial features of trajectories. And it employs multilayer temporal convolutional
networks to transform the temporal state features into a two-dimensional Gaussian distri-
bution {µo ∈ Rto×2,σo ∈ Rto×2,ρo ∈ Rto×1} for representing the motion state distribution.
Inspired by the training objective in the study [26], self-supervised learning based on maxi-
mizing the state log-likelihood loss Lsll is employed to enhance its ability to represent trajec-
tory spatial positions, as shown in Eq. (1). P denotes the Gaussian probability distribution.

Lsll =−log(P(x|µo,σo,ρo)). (1)

3.2 Motion-Scene Aware Learning
After obtaining the distribution of the motion state, we aim to map it into the scene. By
interacting with motion states and the scene, extracting profound representations of motion
trends enables the precise derivation of goal intent. Firstly, the distribution is transformed
into a motion state spatial probability map Hx through a sequence-to-graph transformation
operation. Specifically, each grid in Hx is associated with the probability under the motion
state distribution. Then, the normalized motion state spatial map H̃x is obtained through
linear normalization, as shown in Eq. (2).

H̃x(i) =
Hx(i)−minHx

maxHx −minHx
, i ∈ {(0,0),(0,1), . . . ,(h−1,w−1)}. (2)

Meanwhile, the segmentation model [30] is employed to extract semantic information
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from the scene, which is concatenated with the H̃x along the spatial dimension to obtain
the initial motion-scene spatial alignment graph Hms. Drawing inspiration from Y-Net [23]
and considering that goal intent encompasses long-term information and maintains a certain
distance from the motion state distribution, we adopt the U-Net framework [30] to extract
multi-scale motion-scene features. In the core, we introduce the Motion-Scene Aware Trans-
former (MSA-TF), which extracts the motion-scene embedding features εc from the deepest
layer feature and then employs the multi-head self-attention module [40] to integrate global
information. The final output is the motion-scene aware feature εms.

εms = fc(softmax(
φq(εc)φk(εc)

T

dembed
)φv(εc)+ εc), (3)

where φq,φk,φv and dembed represent embedding functions and feature dimension, respec-
tively. fc denotes the function of the fully connected layer. Finally, εms is fused with multi-
scale features through layer-wise upsampling, and decoded to obtain the goal spatial map
Hg. The cross-entropy loss with the normal distribution of ground truth goal intentions is
used to supervise the estimation of goal intention.

3.3 Motion-Goal Aware Learning

We reshape the deep features of motion states using goal intention to enhance their represen-
tation capability for future trend prediction and utilize them for predicting future trajectory
distributions. Through layer-wise downsampling, we obtain multi-scale spatial distribution
maps of goal intent. In combination with the teacher force strategy [23], the ground truth
is used as input during training, while Hg is employed during inference. Similar to Motion-
Scene Aware Learning, we introduce the Motion-Goal Aware Transformer (MGA-TF) in
the core, which utilizes the multi-head cross-attention module [40] to achieve motion-goal
interaction under scene understanding, resulting in the motion-goal aware feature εmg.

εmg = fc(softmax(
φ ′

q(εg)φ
′
k(εs)

T

dembed
)φ ′

v(εs)+ εs), (4)

where εg and εs represent the embedded goal intent feature and the fused motion-scene fea-
ture, respectively. φ ′

q,φ
′
k,φ

′
v denote the embedding functions in cross-attention. Compared

to self-attention, cross-attention can address the issue of missing fusion information due to
the sparsity of goal intention relative to the motion-scene information. εmg is layer-wise
connected with multi-scale motion-scene features and goal spatial map, and decoded into
the spatial distribution of the predicted trajectory Hp. The learning process is supervised
by combining cross-entropy loss with the normal distribution of ground truth future trajec-
tories. We employ the softargmax operation in the study [23] to sample the final predicted
trajectory. Moreover, to refine the regression process from motion states to the predicted
trajectory distribution, we propose the trajectory log-likelihood loss Ltll based on reparame-
terized probability spatial distribution. It is described in Eq. (5),
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H̃ = softmax(Hp), µ
t
p = ∑

j,k
( j,k)× H̃t

p( j,k), σ
t
p =

√
∑
j,k
(( j,k)−µ t

p)
2 × H̃t

p( j,k),

ρ
t
p =∑

j,k

( j−µ t
p,0)× (k−µ t

p,1)× H̃t
p( j,k)

σ t
p,0 ×σ t

p,1
, t ∈ {1,2, . . . , t f },

Ltll =− log(P(y|µp,σp,ρp)), j ∈ {0,1, . . . ,h−1}, k ∈ {0,1, . . . ,w−1},

(5)

where {µp,σp,ρp} represents the reconstructed parameters. {µ t
p,σ

t
p,ρ

t
p} and H̃t

p respec-
tively denote the values corresponding to the t th index along the temporal dimension of
{µp,σp,ρp} and H̃p. µ t

p,l and σ t
p,l respectively denote the values corresponding to the l th

index along the last dimension of µ t
p and σ t

p.

4 Experiment

4.1 Experimental Setup
Dataset. We evaluate the prediction performance of the proposed method on Stanford Drone
Dataset (SDD) [29] and ETH [28]-UCY [17] datasets, which are widely-used benchmarks
for pedestrian trajectory prediction. The SDD dataset employs drones to capture bird’s eye
view images in 20 different scenes on campus, encompassing over 11,000 pedestrians. ETH-
UCY dataset comprises a total of over 1500 pedestrians from five subdatasets, including
ETH and HOTEL from the ETH dataset, and UNIV, ZARA1, and ZARA2 from the UCY
dataset. We follow the dataset split of research [13, 31], and adopt 2.5 as the sampling
frequency to extract multiple samples. The division results in 3.2-seconds (to = 8) observed
trajectories and 4.8-seconds (t f = 12) future trajectories. Additionally, for the ETH-UCY
dataset, we employ the leave-one-out evaluation methodology, where four sub-datasets are
used for training, and the remaining one is used for testing.
Evaluation Metrics. We evaluate the accuracy of future trajectory prediction and goal in-
tention estimation using the Average Displacement Error (ADE) and the Final Displacement
Error (FDE). Considering the randomness in pedestrian trajectories, we follow the research
[13, 22, 23] to introduce the best-of-N evaluation protocol, which means 20 trajectories need
to be generated and those with the best performance are used for comparison.
Implementation details. Our model is primarily based on the U-net [30] framework incor-
porating the Transformer [40] model, with feature dimensions are set layer-wise to [32, 32,
64, 64, 64]. The Transformers are all configured with 4 heads and feature dimensions of 256.
Additionally, we implement semantic segmentation on scene H using a pre-trained segmen-
tation model provided by research [23], and sample from the spatial probability distribution
of goal intentions multiple times to generate 20 trajectories for assessment. The data is aug-
mented spatially by rotation, flipping, scaling and perspective transformation. The method
is trained using Adam [14] optimizer for 150 epochs with data batches of size 8. The initial
learning rate is set to 0.0001.

4.2 Comparison with Other Methods
We compare our proposed method with 15 other baseline models, where Y-Net [23], In-
trovert [33], CMATP [50] and our MSGANet introduce the visual features from images or
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Method ETH HOTEL UNIV ZARA1 ZARA2 AVG SDD

Social-GAN [13] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21 27.23/41.44

Trajectron++ [32] 0.61/1.02 0.19/0.28 0.30/0.54 0.24/0.42 0.18/0.32 0.30/0.51 19.30/32.70

Social-STGCNN [26] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75 N/A

PECNet [22] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48 9.96/15.88

Transformer-TF [12] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55 N/A

BiTraP-NP [47] 0.37/0.69 0.12/0.21 0.17/0.37 0.13/0.29 0.10/0.21 0.18/0.35 N/A

AgentFormer [48] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39 N/A

Y-Net [23] 0.28/0.33 0.10/0.14 0.24/0.41 0.17/0.27 0.13/0.22 0.18/0.27 7.85/11.85

Introvert [33] 0.42/0.70 0.11/0.17 0.20/0.32 0.16/0.27 0.16/0.25 0.21/0.34 N/A

GroupNet [43] 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44 9.31/16.11

MemoNet [44] 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35 8.56/12.66

Social-VAE [45] 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.33 8.10/11.72

LED [24] 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33 8.48/11.66

TUTR [35] 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36 7.76/12.69

CMATP [50] 0.32/0.51 0.11/0.16 0.37/0.52 0.19/0.27 0.14/0.21 0.22/0.33 N/A

MSGANet (Ours) 0.27 /0.31 0.10/0.14 0.24/0.44 0.17/0.27 0.13/0.20 0.18/0.27 7.69/11.61

Table 1: The ADE/FDE metric comparison with other models on the ETH-UCY (meters)
and SDD (pixels). ’AVG’ represents the average prediction accuracy across the five sub-
datasets in ETH-UCY datasets. The lower the metric, the better the prediction performance.
The bold font represents the optimal performance within the current dataset.

Method DESIRE [16] TNT [52] PECNet [22] Y-Net [23] MSGANet (Ours)

ADE/FDE 19.25/34.05 12.23/21.16 12.79/29.58 11.49/20.23 11.22/19.58

Table 2: Comparison results with a sampling quantity of 5 on the SDD dataset.

videos. Table 1 shows the best predictive performance among the 20 generated trajectories.
Our method achieves state-of-the-art results on multiple datasets. Compared to the recent
approach [50], our method demonstrates an 18.18% improvement in ADE/FDE on the ETH-
UCY dataset. Among the subdatasets, ETH and HOTEL primarily consist of long-distance
movement trajectories with stable motion patterns. Effective prediction of motion trends
under corresponding modalities is achieved through motion state learning, thus exhibiting
optimal performance. For datasets such as Zara1 and Zara2, which encompass more modal-
ities, joint aware learning of motion states and goal intentions results in the generation of
diverse motion trajectories, with optimal FDE metrics. This also signifies that motion state
learning facilitates the inference of multimodal goal intentions.

On the SDD dataset, characterized by richer scene information and multiple motion
modalities, our method yields state-of-the-art results. When comparing individual approaches,
MSGANet exhibits significant enhancements with respective improvements of 10.16% and
8.29% in ADE/FDE compared to the method [44] without motion state learning. Addi-
tionally, compared to the method [35] without goal intention deivation, there is an 8.51%
improvement in FDE. By integrating the learning of motion states and goal intentions, we
enhance the coherence of their spatial patterns. And coupling cross-attention guides the
future trajectory trends of motion states, thereby enhancing the prediction performance of
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Figure 3: Visualization of the predicted trajectories. The green and red curves denote ob-
served and future trajectories, respectively. The yellow curves represent the predicted trajec-
tories by our method.

future trajectory.
To provide more deterministic results for comparison, we supplement the comparison of

the best results obtained under sampling 5 trajectories, as shown in Table 2. Through com-
parative analysis, our method demonstrates superior performance, particularly in achieving
a notable 0.65 reduction in FDE metric compared to the research [23]. Therefore, leveraging
the integration of scene semantics and goal intent information enhances the representation
capacity of motion state features, enabling effective application in the deterministic trajec-
tory prediction task with fewer samples.

4.3 Visualization Results

We conduct a comprehensive qualitative analysis of the predicted trajectories generated by
our proposed method across multiple instances. These instances encompass various pedes-
trian movements, including straightforward linear motions, directional shifts, and complex
turns. The best-performing results among the 20 trajectories predicted by our method are
shown in Figure 3, where for clarity the part of the scene images are visualized. Our method
exhibits superior predictive capabilities across diverse motion patterns. In the showcase,
our approach demonstrates notable proficiency in predicting trajectories involving extended
linear movements, as observed in the instances (I, V). It also accurately anticipates regular

Citation
Citation
{Mangalam, An, Girase, and Malik} 2021
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turns occurring at long distances, as evidenced in the instances (VII, IX). Moreover, when
confronted with abrupt turns, as depicted in the instances (II, IV), our method achieves pre-
cise predictions through the goal intention estimation. Even in instances involving significant

Figure 4: Motion State Distribution.

turning maneuvers, such as those illustrated in
the instances (III, VIII), it still accurately pre-
dicts pedestrians’ destinations by combining
scene information with motion state learning.
Its consistent performance across diverse sce-
narios demonstrates its ability to capture de-
tailed information in pedestrian motion states
and accurately predict destinations. To validate
the effectiveness of motion state learning, we
exponentiate the learned state space distribu-
tion and visualize it, as shown in Figure 4. The
motion state distribution not only encompasses
the positional information of observed trajec-
tories but also maps the future motion trend to
some extent.

4.4 Ablation Study

Method Performance ADE/FDE

Ours w/o MSDL 7.78/11.72

Ours w/o MSAL 7.83/11.81

Ours w/o MSA-TF 7.81/11.77

Ours w/o MGA-TF 7.76/11.64

Ours w/o Ltll 7.73/11.63

Ours 7.69/11.61

Table 3: The results of the ablation study.

To validate the effectiveness of the pro-
posed modules in the model, we con-
duct extensive ablation experiments on the
SDD dataset. These experiments primar-
ily focus on Motion State Distribution
Learning module (MSDL), Motion-Scene
Aware Learning module (MSAL), Motion-
Scene Aware Transformer (MSA-TF) and
Motion-Goal Aware Transformer (MGA-
TF). Additionally, we evaluate the effec-
tiveness of the reparameterized trajectory
log-likelihood loss Ltll used for constrain-
ing the predicted trajectory distribution.
The results of the ablation study are presented in Table 3, where w/o m denotes the method
without module m. It can be seen that each module effectively enhances the predictive per-
formance of our method. The MSDL and MSAL modules improve goal intention derivation,
reducing FDE and aiding goal-guided trajectory prediction. MGA-TF and Ltll respectively
enhance motion-goal interaction and expression of decoded trajectory predictions, effec-
tively improving ADE.

Meanwhile, we visualize the prediction results of the methods without MSDL and with-
out MSAL, as shown in Figure 5. The part of the scene images are visualized for clarity.
Similarly, the green and red curves indicate observed and ground truth future trajectories.
The yellow curve depicts the predicted trajectories by our method. Then the dark blue and
purple curves represent trajectories predicted by the methods without MSDL and without
MSAL, respectively. Through comparison, it can be seen that the former exhibits deviations
in the estimated goal intention due to the absence of motion state representation, leading to
directional and displacement biases. The latter lacks scene interaction, resulting in predicted
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Figure 5: The visualization of ablation study.

trajectories that collide with the edges of the scene. In all instances, our method consistently
demonstrates accurate prediction results.

5 Conclusion

This paper proposes the Motion-Scene-Goal Aware Network (MSGANet), a pedestrian tra-
jectory prediction framework that integrates scene understanding and goal intent inference to
enhance motion state learning. MSGANet employs temporal convolution to adaptively learn
the distribution of the motion state. It combines this with Transformer models based on self-
attention to facilitate aware fusion between motion states and scene information, thereby
enhancing the derivation of goal intentions. Subsequently, a Transformer model with cross-
attention is utilized to facilitate interaction between goal intentions and the motion-scene
fusion feature, guiding the trend of trajectory decoding and enhancing the ability of features
to represent future motion trends. Extensive experiments on ETH-UCY and SDD datasets
validate the superior performance of our model and the effectiveness of each module. Our
approach provides reference for researching the relation between human actions and inten-
tions. Future work will further refine the modeling of motion states based on pedestrian
psychology and motion physics, aiming to refine the transition process from current motion
states to motion intent, while enhancing physical interpretability.
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