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Abstract

Recent advances in anomaly localization research have seen AUROC and AUPRO
scores on public benchmark datasets like MVTec and VisA converge towards perfect
recall. However, high AUROC and AUPRO scores do not always reflect qualitative
performance, which limits the validity of these metrics. We argue that the lack of an
adequate and domain-specific metric restrains progression of the field, and we revisit the
evaluation procedure in anomaly localization. In response, we propose the Area Under
the Per-IMage Overlap (AUPIMO) as a recall metric that introduces two major distinc-
tions. First, it employs a validation scheme based solely on normal images, which avoids
biasing the evaluation towards known anomalies. Second, recall scores are assigned
per image, which is fast to compute and enables more comprehensive analyses (e.g.
cross-image performance variance and statistical tests). Our experiments (27 datasets, 8
models) show that the stricter task imposed by AUPIMO redefines anomaly localization
benchmarks: current algorithms are not suitable for all datasets, problem-specific model
choice is advisable, and MVTec AD and VisA have not been near-solved. Available on
GitHub1.

1 Introduction
Anomaly Detection (AD) is a machine learning task based on normal patterns, meaning they
are not of special interest at inference time. As such, the model must identify deviations from
the patterns observed in the training set, i.e. anomalies. Within this domain, Visual Anomaly
Detection focuses on image or video-related applications, including both the detection of
anomalies in images (answering the question, “Does this image contain an anomalous struc-
ture?”) and the more precise task of anomaly localization or segmentation, where the goal is

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1github.com/jpcbertoldo/aupimo

https://github.com/jpcbertoldo/aupimo


2 BERTOLDO, AMELN, VAIDYA, AKÇAY: AUPIMO

CPR
RD++CVPR23

DRAEMICCV21

RDCVPR22

PatchCoreCVPR22
DeSTSegCVPR23

PyramidFlowCVPR23

EfficientAD

89 out 
of scale

Normal

Anomalous

Figure 1: Left: performance on MVTec AD over time, approaching a near 100% perfor-
mance plateau. Right: images from the dataset Pill (left column) and their inferred anomaly
maps (right column; higher values mean anomalous; JET colormap) from the best perform-
ing model in this dataset (EfficientAD; see Appendix D), with 98.7% AUROC and 96.7%
AUPRO. The normal image (top) has higher anomaly scores than the anomaly (bottom).

to determine if specific pixels belong to an anomaly. Our emphasis is on anomaly localiza-
tion in image applications (other modalities are out of the scope of this paper, but extensions
of our work are possible and briefly discussed in Sec. 6).

Anomaly localization research has achieved significant progress, partly thanks to the
increased availability of suitable datasets [4, 6, 12, 17, 28]. In particular, MVTec Anomaly
Detection (MVTec AD) [4] and Visual Anomaly (VisA) [28] comprise (together) 27 datasets
(22 object and 5 texture-oriented) with high-resolution images and pixel-level annotations.

AUROC [10] and AUPRO [5] – respectively, the Area Under the Curve (AUC) of the Re-
ceiver Operating Characteristic (ROC) and Per-Region Overlap (PRO) curves (see Sec. 3.1)
– have been used to evaluate anomaly localization, but it has been observed that the extreme
class imbalance at pixel level inflates the scores produced by these metrics2 [19, 23]. As
a result, the performance numbers on MVTec AD and VisA reported in the literature are
converging towards 100% (Fig. 1, left), giving the impression that these datasets have been
solved. Meanwhile, even the top performing models often fail to localize anomalous re-
gions in some of the more challenging samples from these datasets while raising many False
Positives (FPs) (i.e. a normal pattern wrongly flagged as anomalous in Fig. 1, right).

We argue that the anomaly localization literature urges a metric well-suited to its unique
characteristic: the positive (anomalous) class is unknown beforehand and may have an un-
limited number of modes. While anomalous samples (even of different types) are available
in public datasets, the goal of an AD model is to detect any type of anomaly. Our work
emphasizes on this unsupervised nature of the problem to build a performance metric that
does not depend on anomalies available at hand to avoid a bias towards known anomalies.

In response, we present the Area Under the Per-Image Overlap (AUPIMO) curve
(Sec. 3.2). It relies on a clear separation of normal and anomalous images for, respectively,
validation and evaluation of models – thus avoiding class imbalance-related issues. Its strict
validation requirement sets a more challenging task in-line with the latest advances in the
field. Our work provides means to comprehensively compare models with image-specific
evaluation scores and, along with the standard procedure proposed in Sec. 4, tackles cross-
paper comparison issues. In summary, our work presents the following contributions:

1. A validation-evaluation framework based on strict low tolerance for FPs on normal
images only, which avoids conditioning the model behavior on known anomalies, thus

2The term “metric” is used as a synonym for “performance measure” in this paper. It does not refer to the
mathematical concept of distance in a metric space.
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(a) AUPIMO’s integration bound is chosen so
false positive regions in normal images are small.
Zoomed-in region: the lowest (i.e. largest) level
set seen by AUPIMO in a normal image is in-
significant compared to the structure of the im-
age (more examples in Appendix A). AUPRO’s
equivalent is larger as it is chosen to yield recall-
achievable results (i.e. based on the anomalies).

Anomaly Score Map

ground truth

AUPROlowest level set
AUPIMO

lowest level set

(b) Left: anomalous image and its ground truth
annotation mask (green region means anomalous).
Right: anomaly map (JET colormap; blue/red
means lower/higher anomaly score). The upper
bound level sets are the lowest level sets seen by
each metric. Their areas under the curve (AUCs)
correspond to the average recall of the level sets
above them (i.e. inside these contours).

Figure 2: AUPRO and AUPIMO’s upper bounds visualized as level sets from the anomaly
score maps. Solid contours are level sets at thresholds yielding the maximum FPR in AUPRO
(white) and AUPIMO (black). Images from the dataset MVTec AD/ Capsule.

providing a recall measure consistent with AD’s unsupervised nature (Sec. 3.3);
2. Per-image recall scoring, enabling the analysis of cross-image performance variance

and high-speed execution at high resolution both on CPU and GPU (Sec. 5).
3. Empirical evidence suggesting that MVTec AD and VisA datasets have not been near-

solved and that problem-specific model choice is advisable (Sec. 5).

2 Related Work

AUROC is a threshold-independent metric for binary classifiers [10], and it is widely used to
assess anomaly localization, treating it as a pixel-level binary classification. However, it has
recently been argued that, in real-world applications, full or partial localization of anomalous
regions is more relevant than pixel accuracy [4, 27]. Furthermore, it has been shown that
AUROC is not suitable for anomaly localization datasets due to the extreme class imbalance
[19, 23], prompting the exploration of other evaluation metrics in the field [4, 19, 27].

Bergmann et al. [4] proposed a ROC-inspired curve called Per-Region Overlap (PRO). At
each binarization threshold, it measures the region-scoped recall averaged across all anoma-
lous regions available in the test set. Notably, AUPRO excludes thresholds yielding False
Positive Rate (FPR) values above 30% in the computation of the area under the PRO curve
to force the metric to operate over a range of meaningful thresholds.

Recent studies have proposed metrics that index the thresholds based on recall instead of
FPR. Rafiei et al. [19] observed that the high pixel-level class imbalance in MVTec AD and
similar anomaly localization datasets challenges the effectiveness of AUROC and AUPRO
for model comparison. They concluded that the area under the Precision-Recall (PR) curve
is a more suitable metric for AD as it is conditioned on the positive class (anomalous).
Alternatively, other authors [11, 28] have used the F1-max score, which is the best achievable
F1 (harmonic mean of recall and precision), implying an anomaly score threshold choice.
Zhang et al. [27] proposed the Instance Average Precision (IAP), a modified version of the
PR curve where recall is defined at the region-level, counting a region as detected if at least

Citation
Citation
{Fawcett} 2006

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Zhang, Li, Li, Huang, Shan, and Chen} 2023

Citation
Citation
{Rafiei, Breckon, and Iosifidis} 2023

Citation
Citation
{Saito and Rehmsmeier} 2015

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Rafiei, Breckon, and Iosifidis} 2023

Citation
Citation
{Zhang, Li, Li, Huang, Shan, and Chen} 2023

Citation
Citation
{Bergmann, Fauser, Sattlegger, and Steger} 2019

Citation
Citation
{Rafiei, Breckon, and Iosifidis} 2023

Citation
Citation
{Jeong, Zou, Kim, Zhang, Ravichandran, and Dabeer} 2023

Citation
Citation
{Zou, Jeong, Pemula, Zhang, and Dabeer} 2022

Citation
Citation
{Zhang, Li, Li, Huang, Shan, and Chen} 2023



4 BERTOLDO, AMELN, VAIDYA, AKÇAY: AUPIMO

Table 1: Notation.

Symbol Description

M, j Number and index of pixels in an image
¬,∧ Pointwise logical negation/AND
|·| Cardinality of a set or number of 1s in a mask
a ≥ t Binarization of a by t
L, U Integration lower/upper bounds

Symbol Description

a ∈ RM
+ Anomaly score map

y ∈ {0,1}M Ground truth (GT) mask
r ∈ {0,1}M Region mask
t ∈ R+ Threshold
A, Y , R Sets of a, y, and r

half of its pixels are correctly detected. This alternative recall metric is further used as a
validation requirement (threshold choice) and the pixel-level precision is used to compare
models (precision-at-k%-recall).

AUPIMO uses a validation criterium based only on normal images to avoid a bias to-
wards detectable anomalies. As detailed in Sec. 3, we advocate in favor of normal-only vali-
dation to build an evaluation score in line with AD’s unsupervised nature, while using recall
only to rate models. Finally, AUPIMO uses image-scoped metrics, preserving the structured
information from the images and making its computation significantly faster (Fig. 5a).

3 Metrics
We define a framework to compare AUROC and AUPRO (Sec. 3.1), introduce our new
metric (Sec. 3.2), and discuss its properties (Sec. 3.3). Key notation is listed in Tab. 1.

Our goal is to compare a model’s output a (an anomaly score map; higher means more
likely to be anomalous) with its ground truth mask y (0 and 1 labels indicate “normal” and
“anomalous” respectively), illustrated in Fig. 2b. We define r as a region in y such that
instances do not overlap (maximally connected components). All metrics are pixel-wise
(one score/annotation per pixel), not image-wise (one score/annotation per image) since our
focus is to measure whether a model can detect anomalous structures within an image. We
define the False Positive Rate (FPR) and True Positive Rate (TPR), i.e. recall, across three
scopes: set (all pixels in all images confounded; subscript s), per-image (all pixels in an
image; subscript i), and per-region (pixels in a single anomalous region; subscript r):

Fs : t 7→
∑y∈Y |(a ≥ t)∧ (¬y)|

∑y∈Y |¬y|
Ts : t 7→

∑y∈Y |(a ≥ t)∧y|
∑y∈Y |y|

(1)

Fi : t 7→ |(a ≥ t)∧ (¬y)|/ |¬y| Ti : t 7→ |(a ≥ t)∧y|/ |y| (2)

Tr : t 7→ |(a ≥ t)∧ r|/ |r| . (3)

Instances at each scope (r, y, and a) are ommited in the notation for brevity.

3.1 Precursors: AUROC and AUPRO
The ROC and PRO curves (Fig. 3a) can be defined as

ROC : t 7→ (Fs(t) , Ts(t)) and PRO : t 7→
(
Fs(t) , Tr(t)

)
, (4)

where Tr : t 7→ 1
|R| ∑r∈R Tr

r (t) is the average Region TPR; Tr
r refers to the Tr applied to the

instance r and R is the set of all r from all y ∈ Y . Both curves trace the trade-off between
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Each curve summarizes
the test set with different 
aggregations.

ROC

PRO

(a) ROC and PRO curves

PIMO

One curve per image!

(b) PIMO curve
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FastFlow
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U-Flow
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AUROC (blue) / AUPRO (30% red, 5% purple) / AUPIMO (boxplot)

(c) MVTec AD / Zipper

Figure 3: (a, b) ROC, PRO, and PIMO curves. The y-axes are TPR metrics: ROC uses
the set TPR (all anomalous pixels from all images confounded); PRO uses the region-scoped
TPR averaged across all regions from all images; PIMO uses the image-scoped TPR keeping
one curve per anomalous image (no cross-instance averaging). The x-axes are FPR metrics
shared by all instances (i.e. anom. regions for PRO and anom. images for PIMO), which
indexes the binarization thresholds. ROC and PRO use the set FPR (all normal pixels from
all images confounded) in linear scale. PIMO uses the image-scoped FPR averaged accross
normal images only in log scale. The curves are summarized by their (normalized) area under
the curve (AUC), with different integration ranges: AUROC in [0,1], AUPRO in [0,0.3]3, and
AUPIMO in [10−5,10−4]. (c) Benchmark on dataset MVTec AD / Zipper shows how their
AUCs differ.

False Positives (FPs) and True Positive (TP)s across all potential binarization thresholds.
Both use the Set FPR as the x-axis, but different recall measures as the y-axis, reflecting
distinct Region TPR aggregation strategies. PRO calculates the arithmetic average (equal
weight to each region). ROC uses the Set TPR, which is equivalent to averaging the Region
TPRs with region size weighting. Their respective AUCs, AUROC and AUPRO, summarize
the curves into a single score:

AUROC =
∫ 1

0
Ts

(
F−1

s (z)
)

dz and AUPRO =
1
U

∫ U

0
Tr

(
F−1

s (z)
)

dz , (5)

where F−1
s is the inverse of Fs. In practice, they are computed using the trapezoidal rule with

discrete curves given by a sequence of anomaly score thresholds.
AUPRO is restricted to thresholds such that Fs(t) ∈ [0,U ] (i.e. to the left of the vertical

line in Fig. 3a), where U is the upper bound FPR. This means that AUPRO only accounts
for recall values obtained from level sets higher than (i.e. inside) the white level set in the
anomaly score map in Fig. 2. The default value of U = 30%3 is based on the intuition that at
such FPR levels the segmentation contours of the anomalies are no longer meaningful [5], so
that should be the “worst case”. From this perspective, the FPR restriction in AUPRO acts
as a model validation – an implicit requirement since a partial threshold choice is imposed.

3.2 Our Approach: AUPIMO
PRO measures region-scoped recall at each binarization threshold, which are indexed by an
FPR metric (the x-axis) shared by all region instances. We generalize this idea and employ
the term Shared FPR (Fsh) to refer to “any FP measure shared by all anomalous instances.”

3We also considered a AUPRO with U = 5% (noted AUPRO5%) in our experiments for the sake of making the
metric more challenging.
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In our approach, the Set FPR used as x-axis by ROC and PRO is replaced by the average
Image FPR on normal images only: Fsh : t 7→ 1

|Y0| ∑y∈Y0 Fy
i (t), where Y0 ⊂ Y contains

only and all normal images in Y , and Fy
i refers to Fi computed on instance y. This design

choice is a major counterpoint with previous approaches, and its implications are discussed
in Sec. 3.3. The Per-Image Overlap (PIMO) curve (Fig. 3b) and its AUC are defined as

PIMOy : t 7→ (log(Fsh(t)) , Ti(t)) and AUPIMOy =
∫ log(U)

log(L)

Ti
(
F−1

sh (z)
)

log(U/L)
dlog(z) , (6)

where the integration bounds have default values L = 10−5 and U = 10−4. To have a better
resolution at low FPR levels, the x-axis is in log-scale, and the term 1/ log(U/L) normalizes
the integral’s score to [0,1]. Contrasting with AUROC and AUPRO, which define a single
score for the entire test set, we keep one score per image (superscript y).

3.3 AUPIMO’s properties

AUPIMO significantly diverges from its predecessors by: (1) considering only normal in-
stances for validation and using a stricter requirement (integration range in the x-axis), (2)
evaluating metrics at the image scope, and (3) calculating individual scores for each image.
This section discusses the implications and advantages of these design choices.

Bias-free validation AUROC is a threshold-independent metric, which limits its usage in
real-world applications that require threshold selection for inference. AUPRO addresses this
by imposing an FPR restriction, which selects a range of valid thresholds, thus carrying an
implicit model validation based on the Set FPR. AUPIMO uses a similar strategy, but – to
produce a bias-free score – we propose that the validation metric (x-axis of the curve) should
only use normal images, while anomalous images are only used for evaluation.

AD is often viewed as a binary classification problem, yet this simplification is mislead-
ing. While the normal class is well-defined by the training set, the anomalous class is, by
definition, unknown, unbounded, thus inherently multi-modal. Public datasets (e.g. MVTec
AD and VisA) provide various types of anomalies, but the objective in AD is to detect any
type of anomaly. As the positive class in AD can have an unlimited number of modes, we
argue that an evaluation metric in benchmarks should avoid conditioning the model behavior
(i.e. creating a bias, e.g. selecting a threshold range) based on known anomalies.

The x-axis in AUPIMO (Fsh) is built only from normal images, which can be reasonably
assumed from the same distribution as the training set. In this framework, the variance of
the normal class coming from acquisition conditions, sensor noise, etc. is accounted for in
the validation metric (Fsh). By ensuring that these variations are not falsely detected, the
model’s capacity to detect anomalies is isolated from the normal class’s variability. This
essential change avoids biasing the evaluation metric towards available anomalies, which is
consistent with the unsupervised nature of AD. Note that an alternative AUPRO could be
defined in the same way, but AUPIMO carries additional advantages discussed below.

Anomaly-dependent metrics The Area Under the Precision-Recall (AUPR) and its variant
Instance Average Precision (IAP) [27] use recall measures on the x-axis and precision on the
y-axis. Similar to the AUCs defined in Sec. 3.1 and Sec. 3.2, they express the average of
the y-axis over a range of thresholds, which are indexed by the x-axis. Using the recall as
x-axis biases the metric in favor of detectable anomalies, making the metric sensitive to the
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distribution of known anomalies. The threshold at the integration lower bound is the maxi-
mum full-recall threshold, making them sensitive to hard anomalies4 – while not revealing
them. Conversely, easy anomalies can be over-represented because low-recall thresholds are
coverered – i.e. unnecessarily high thresholds are accounted for.

The F1-max score and IAP further choose, respectively, optimal and minimum thresh-
olds based on the recall. Similarly, AUPRO validates models using anomalous images as
well because it restricts the Set FPR (Eq. (1)), which encompasses all test images (thus the
normal-annotated pixels in anomalous images). While such threshold choices are useful
for practical applications, we argue that benchmarks should prefer bias-free metrics so that
model comparison is more consistent across different datasets and applications.

Finally, AUPIMO’s validation is insentive to imprecisions in the anomaly annotations
– i.e. when only loose bounding box annotations are available. Other model conditioning
criteria – as in F1-max and IAP in particular – carry pixel-level imprecision but AUPIMO is
not affected because normal images are only annotated at the image level.

Low tolerance From an application perspective, anomalies are expected to contain infor-
mation deserving the user’s attention. A high FPR can lead to user frustration and diminish
trust in the model. To tighten evaluation, we restrict the FPR range in AUPIMO to be be-
tween 10−5 and 10−4 for datasets like MVTec AD and VisA. At such levels, the FP regions
in normal images are small compared to the structures seen in the images (see Fig. 2 and
Appendix A). An AUPIMO score can be interpreted as the “average segmentation recall in
an anomalous image given that the model (nearly) does not yield FP regions in normal im-
ages”. These default values were chosen to establish a challenging task in-line with recent
advances in research, but they can be adapted to application-specific needs.

AUPRO vs. AUPIMO Fig. 2 shows a visual comparison between AUPRO and AUPIMO.
The upper bound in AUPRO is chosen from a precionsion-inspired criterion (“beyond that
point the anomaly segmentations are no longer useful”), so the FP regions on normal images
can be large. In contrast, AUPIMO chooses a more conservative upper bound. The model
conditioning in AUPIMO ensures that FP regions in normal images are insignificant. As a
result, its recall on the anomalous region (on the right in Fig. 2b) is lower than AUPRO’s –
which is expected.

Image-scoped metrics Note that the set-scoped metrics in AUROC and AUPRO are ill-
suited for images because information within each image is disregarded (all pixels are con-
founded). AUPIMO avoids this problem by only using image-scoped metrics (i.e. ratios of
pixels within each image). Image-scoped measures account for image structure, are fast to
compute (Fig. 5a), and are robust to noisy annotations (see Fig. 5b).

Image-specific scores Since each curve/score refers to an image file, it is easy to index
scores to instances5. Achieving the same with region-based scores would require more meta-
data, and finding connected regions is implementation-sensitive. For instance, Anomalib’s
[1] CPU and GPU-based implementations are from opencv-python [7] and kornia
[21], and the AUPRO scores slightly differ. Per-image scores enable fine-grained analyses
otherwise impossible with AUROC and AUPRO. Score distributions (e.g. Fig. 3c) – instead
of single-valued scores – provide insight into performance variance, which we exploit to
select representative samples for qualitative analysis in Appendix D. Finally, it also enables

4Reminder: lower threshold means higher recall, so the anomalies with lowest anomaly score are the hardest.
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Figure 4: Dataset-wise comparison. Each triangle is a set-scoped score (AUROC, AUPRO,
and AUPRO5%) or a cross-image statistic (average AUPIMO) from a dataset in MVTec AD
(△) or VisA (▽). Diamonds are cross-dataset averages (all confounded). Plots have different
x-axis scales. AUPIMO reveals that all models have a large cross-problem variance, meaning
that none of the models is robust to all problems.

the use of statistical tests, which we showcase in an ablation study in Appendix C.1.

4 Experimental Setup

We benchmark the datasets from MVTec AD and VisA with State-of-the-Art (SOTA) models
to compare the performances reported in terms of AUROC, AUPRO, and AUPIMO. We also
report AUPRO with U = 5% (AUPRO5%) for the sake of comparing with a more challenging
alternative of that metric.

We reproduce a selection of models: PaDiM [8] from ICPR 2021, PatchCore [22] from
CVPR 2022, SimpleNet [15], PyramidFlow6[14], and RevDist++ [25] from CVPR 2023,
along with the recently published models UFlow [24], FastFlow [26], and EfficientAD [2].
Our aim is to ensure a comprehensive evaluation with a set of different algorithm fam-
ilies. This selection includes methods based on memory bank (PatchCore), reconstruc-
tion (SimpleNet), student-teacher framework (RevDist++, EfficientAD), probability density
modelling (PaDiM), and normalizing flows (FastFlow, PyramidFlow, UFlow).

All models were trained with 256×256 images (downsampled with bilinear interpolation,
no center crop), and with the hyperparameters reported in the original papers. We used the
official implementations or Anomalib [1]. The implementations of AUROC and AUPRO are
from Anomalib [1]. Details provided in Appendix D.

Cross-paper comparisons in the anomaly localization literature often have conflicting
evaluation procedures. We aim to tackle this issue by proposing our evaluation guidelines
as a standard: (1) compute test set metrics at the annotations’ full resolution with bilinear
interpolation for resizing the anomaly score maps if necessary; (2) do not apply crop to the
input images; (3) publish per-image scores5; (4) (ideally) report the score distribution (e.g.
boxplots as in Fig. 3c). Details in Appendix D.

5A standard format is proposed in Appendix D and implemented in our repository.
6Our AUPRO results significantly differ from PyramidFlow’s paper. Their implementation has higher scores

because it does not apply the maximum FPR (30%) as proposed by [5] https://github.com/gasharper/
PyramidFlow (commit 6977d5a), see function compute_pro_score_fast in the file util.py.

Citation
Citation
{Defard, Setkov, Loesch, and Audigier} 2021

Citation
Citation
{Roth, Pemula, Zepeda, SchÃ¶lkopf, Brox, and Gehler} 2022

Citation
Citation
{Liu, Zhou, Xu, and Wang} 2023

Citation
Citation
{Lei, Hu, Wang, and Liu} 2023

Citation
Citation
{Tien, Nguyen, Tran, Huy, Duong, Nguyen, and Truong} 2023

Citation
Citation
{Tailanian, Pardo, and Musé} 2023

Citation
Citation
{Yu, Zheng, Wang, Li, Wu, Zhao, and Wu} 2021

Citation
Citation
{Batzner, Heckler, and KÃ¶nig} 2023

Citation
Citation
{Akcay, Ameln, Vaidya, Lakshmanan, Ahuja, and Genc} 2022

Citation
Citation
{Akcay, Ameln, Vaidya, Lakshmanan, Ahuja, and Genc} 2022

Citation
Citation
{Bergmann, Batzner, Fauser, Sattlegger, and Steger} 2021

https://github.com/gasharper/PyramidFlow
https://github.com/gasharper/PyramidFlow


BERTOLDO, AMELN, VAIDYA, AKÇAY: AUPIMO 9

240

600

960

4 min

10 min

16 min

AUPRO on CPU
AUPRO on GPU

80 120 160
Number of images

10

15

20 AUPIMO on CPU
AUPIMO on GPU

AUROC on CPU
AUROC on GPU

Ex
ec

ut
io

n 
tim

e 
(S

EC
)

(a) Execution time

Chewing Gum / Image 068 Zoomed-in region

0% 5% 10% 15% 20% 25%
Difference in metric value (original - noisy annotated)

1

10

100

Fr
eq

ue
nc

y 
(lo

g) AUROC AUPRO AUPRO 5% Avg. AUPIMO

(b) Robustness

Figure 5: (a) Execution time of metrics on MVTec AD / Screw dataset (image resolution
of 1024×1024; average times over 3 runs). (b, top) An anomalous sample from the dataset
VisA / Chewing Gum superimposed with its annotation (pink) shows meaningless, tiny (even
1-pixel) regions (the mask has not been downsampled). (b, bottom) Robustness to noisy
annotation. Histograms show the distribution of the difference between the scores without
and with the synthetic mistakes (closer to zero is better).

5 Results

In this section we comment on the results of a single dataset (Fig. 3c), present a summary
across all datasets (Fig. 4), and compare AUROC, AUPRO, and AUPIMO in terms of the
execution time and robustness to noisy annotation. Due to the space constraints, additional
results are available in Appendix C and the benchmarks from all datasets in MVTec AD and
VisA are documented in Appendix D.

Benchmark on MVTec AD / Zipper Fig. 3c illustrates two common observations in our
benchmarks. First, it shows how AUROC and AUPRO fail to reveal differences between
models (e.g. differences of 0.1% and 0.4% between the two best models). While AUPRO5%
amplifies the differences, AUPIMO’s strict validation causes the best model to stand out
more clearly. Note that AUPRO5% and AUPIMO show different rankings, which might be
attributed to how they weight small anomalies differently. Second, image-specific perfor-
mance often has large variance and the best models have left-skewed AUPIMO distributions
– c.f . the best models per dataset in Appendix D.3. In Fig. 3c for example, several mod-
els have worst and best-case samples at 0% and 100% AUPIMO respectively. Fortunately,
AUPIMO provides the means to investigate this by programatically identifying specific in-
stances or anomaly types not well-detected by a model.

Cross-dataset analysis Fig. 4 reveals two key insights regarding the SOTA in anomaly lo-
calization. First, the benchmark datasets from MVTec AD and VisA still have room for
improvement. While AUPRO5%’s (purple) stricter validation is more challenging, AUPIMO
(green) reveals that even the best models have failure cases when constrained to low FP tol-
erance. We argue that setting such a challenging standard will push the next generation of
models to achieve a more trustworthy task: high anomaly recall with near-zero false posi-
tives. Second, none of the models consistently achieves reasonable performance across all
datasets. For example, despite PatchCore’s high performance in many problems, it performs
poorly on VisA / Macaroni 2 (details in Appendix D.3). Meanwhile, EfficientAD has a
reasonable performance on this dataset, thus the dataset is not unsolvable with the current
models. This provides a useful insight for practitioners: problem-specific model choice is
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highly advised because a model’s failure in one dataset does not imply failure in another one.

Execution time Having computationally efficient metrics is essential to enable fast itera-
tions and not create computational bottlenecks in research and development. Fig. 5a shows
that AUROC and AUPIMO have comparable execution time, but AUPRO is significantly
slower both on CPU and GPU. The main reason is that AUPRO requires connected com-
ponent analysis, while AUROC and AUPIMO do not. AUPIMO’s implementation relies on
simple operations, enabling the use of numba [13] to further accelerate the computation (re-
ported execution times include the just-in-time compilation). The GPU used was an NVIDIA
GeForce RTX 3090 and the CPU was an Intel Core i9-10980XE. Note that the chosen model
does not influence the execution time because the anomaly score maps are precomputed.

Robustness In real-world use-cases, high-quality annotation is hard to acquire or even to
define. Fig. 5b shows an example of a ground truth mask where noisy regions can be seen.
We found this issue to be prevalent in VisA (more examples in Appendix B). In the PRO
curve, these tiny regions have the same weight as the actual anomalous regions. In contrast,
AUPIMO is more robust to this issue due to their limited contribution to the overall image
score. Fig. 5b demonstrates this in an experiment with artificially added noise. Random mis-
takes mimicking statistics from VisA are added to the datasets in MVTec AD. We generate
one noisy mask for each anomalous mask by adding randomly shaped anomalous regions
to it. The number and size of the noisy regions are randomly sampled with probabilities
matching the statistics of the VisA dataset (average frequencies from Tab. 2 in Appendix B).

6 Conclusion
We introduced AUPIMO: a novel recall metric tailored for anomaly localization address-
ing the limitations of its predecessors (AUROC and AUPRO) and formalizing a validation-
evaluation framework. As a guiding principle, it was proposed that the validation step should
only depend on normal images to avoid biasing the model behaviour towards known anoma-
lies, thus making the metric consistent with the unsupervised nature of AD. Finally, a strin-
gent false positive restriction is proposed to establish a more challenging task on contempo-
rary benchmark datasets and expose differences between models.

AUPIMO is built with image-scoped metrics and enables simple assignment of image-
specific scores. As demonstrated, these design choices offer advantages in terms of com-
putational efficiency (see Fig. 5a), fine-grained performance analysis (see Fig. 3c and Ap-
pendix C.1), and resilience against noisy annotation (see Fig. 5b).

Evaluating eight recent models on 27 datasets with AUPIMO revealed a significant in-
sights about the SOTA in anomaly localization. We show evidence that problem-specific
model selection is highly advised, raising further questions for future research. Namely, can
one identify dataset traits causing a model to succeed or fail? Or conversely, which model
features should one look for to succeed on a specific problem?

Limitations In this paper we focused on (2D) image anomaly localization, but AUPIMO can
be easily adapted to 3D imaging (e.g. X-ray tomography), 3D point clouds (e.g. LiDAR), and
video-based applications (a proof of concept is shown in Appendix C.3). Other domains like
times series would require more careful adaptation, which is left for future work. As a recall
metric, the notion of segmentation quality is not covered by AUPIMO, but Appendix C.4
briefly discusses alternatives based on the same validation-evaluation principle.
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