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1 Model setup
The GeoFormer is composed of an image encoder and an auto-regressive decoder. The
encoder uses a patch size of 4, a window size of 7, and SWINv2 encoder dimensions of 192.
We apply a dropout rate of 0.2 in the SWINv2 layer paths, with depths of 2, 2, 18, and 2
for layers 1, 2, 3, and 4, respectively, each consisting of 6, 12, 12, and 48 attention heads.
The encoder’s hidden dimensions are 512. The decoder consists of 8 layers, each with 24
attention heads (8 dedicated to ALiBi attention), and dropout of 0.1 and 0.2 in the attention
paths and feedforward layers, respectively. We use the Adam-W optimizer with a learning
rate of 2×10−4, β = (0.9,0.999), and a weight decay of 1×10−2.

2 Ablation studies
We computed ablations on a combination of factors related to our model’s contributions.
These included applying the sorting of polygons in each image, incorporating an encoder with
SWIN pyramidal feature maps [4], the value of added linear bias (ALiBi) [6], using relative
rotational embeddings (RoPE) [7], and adding random token masking during training in our
decoder. The total number of ablation combinations for all experiments was 32. In the main
paper, we highlighted 8 experiments, while in Table 1, we present the full results.

A primary observation was the significant limitation of our model in fitting the data in any
form when applying our pyramidal features without including either ALiBi or mask-based
training. In fact, simply adding random masked decoding, along with our pyramidal feature
maps, improved performance by 10 percentage points in mAP. Although not evident in this
chart, we observed that the model immediately overfitted the data if only the pyramidal feature
maps were present, indicating that most learning occurred in the Encoder, leading to poor
generalisation when performing auto-regressive decoding.

Another notable observation was that the absence of positional embeddings, particularly
in the form of ALiBi, substantially decreased performance. Additionally, when using only
either ALiBi or RoPE embeddings, the model became less capable of predicting the correct
number of points in the final prediction (N-ratio).
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Table 1: Inference results from our ablation studies trained and validated on the small version
of the Aicrowd dataset [5]

Sort polygons Pyramid Features ALiBi RoPE Mask AP↑ AP50↑ AP75↑ AR↑ AR50↑ AR75↑ bAP↑ IoU↑ C-IoU↑ N-ratio

✓ ✓ ✓ ✓ 18.68 34.10 18.99 49.93 70.34 53.10 34.12 67.29 53.62 2.17
✓ ✓ ✓ 16.73 32.60 15.59 44.97 61.38 48.28 28.19 59.15 49.27 1.99

✓ ✓ ✓ ✓ 15.27 28.69 15.16 48.28 71.72 53.79 31.43 51.92 23.18 10.04
✓ ✓ ✓ 15.15 27.96 15.12 52.07 69.66 56.55 32.44 61.33 30.74 8.51
✓ ✓ ✓ ✓ ✓ 12.89 25.29 11.72 45.17 66.21 51.72 31.07 62.80 45.27 4.03

✓ ✓ ✓ 12.33 26.25 10.17 39.86 60.69 42.07 22.36 46.18 19.95 9.59
✓ ✓ ✓ 12.10 21.68 12.61 58.07 76.55 62.07 36.73 67.59 48.35 4.30
✓ ✓ ✓ ✓ 10.82 22.05 9.28 36.41 54.48 40.00 25.62 53.50 21.49 10.20
✓ ✓ ✓ 10.03 21.06 8.21 45.24 67.59 46.21 27.01 48.51 22.80 9.14

✓ ✓ 9.95 20.86 8.50 50.90 71.72 57.24 22.43 40.11 13.68 11.90
✓ ✓ 9.58 18.63 9.19 45.59 60.00 50.34 27.40 42.73 17.91 10.61

✓ ✓ 9.29 22.42 5.71 39.24 59.31 41.38 20.68 49.70 39.23 2.81
✓ ✓ 9.01 16.72 8.91 48.55 66.90 51.03 30.67 60.09 24.64 10.19
✓ ✓ 8.39 16.26 7.85 40.14 56.55 44.83 26.85 53.63 20.17 9.99
✓ ✓ ✓ 7.64 15.35 6.67 50.21 66.21 55.17 28.61 58.00 40.75 4.89

✓ ✓ ✓ ✓ 6.77 16.57 4.10 36.14 56.55 37.93 18.00 41.00 25.18 6.07
✓ 6.23 13.73 4.92 41.38 60.00 45.52 20.46 43.36 23.22 5.51

✓ ✓ ✓ 6.20 12.73 5.21 41.66 64.83 44.14 26.34 50.58 23.23 9.76
✓ ✓ ✓ ✓ 5.56 13.45 3.39 26.07 46.90 26.21 17.78 44.60 27.95 5.64

✓ ✓ 5.56 13.45 3.39 26.07 46.90 26.21 17.78 44.60 27.95 5.64
✓ ✓ ✓ 4.54 12.05 2.32 23.72 42.76 24.14 13.67 31.08 11.49 10.88

✓ 4.05 12.08 1.46 22.07 41.38 18.62 15.13 40.94 32.87 2.43
✓ ✓ 2.67 7.89 1.07 28.14 47.59 28.97 13.54 35.75 18.23 8.12
✓ ✓ ✓ 0.61 2.06 0.08 16.90 33.10 14.48 4.91 22.02 10.31 7.64

✓ 0.16 0.20 0.20 5.38 17.93 2.07 0.13 5.35 1.71 11.92
✓ 0.13 0.59 0.02 7.52 19.31 7.59 3.05 21.15 13.89 4.20

✓ ✓ 0.01 0.03 0.00 0.90 3.45 0.00 0.03 14.79 4.94 12.07
✓ ✓ 0.00 0.00 0.00 0.14 1.38 0.00 0.04 10.41 3.52 11.85

✓ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
✓ ✓ ✓ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
✓ ✓ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Overall, we observed that performance was generally higher when introducing the pyra-
midal features, as opposed to not using them. The introduction of both ALiBi and RoPE
embeddings, along with the sorting of polygons, allowed for the best performance in our
model. While masked decoding provided somewhat lower performance than without it, we
observed faster convergence and better performance with masking when training on the full
dataset.

2.1 Robustness studies

To better understand the situations where GeoFormer outperforms previous methods, we
conducted a series of robustness studies. These studies were designed to simulate artefacts
typically encountered in remote sensing imagery, including variations in spatial image resolu-
tion, rotational changes, and missing values. A visual example of the perturbations performed
is illustrated in Figure 1. The results are presented in Table 2 and Figures 2. As mentioned in
the main paper, we used the smaller Aicrowd dataset [5] for computing metrics, while em-
ploying the best model checkpoints trained on the full dataset. In Table 2, we present metrics
similar to those in the main paper, with additional columns for Perturbation and Perturbation
Factor (PF). Initially, we computed a baseline for each model, representing the performance
across the chosen metrics without any perturbations. We followed the same approach as in
the main paper, where COCO-metrics are computed as defined in the original MS-COCO
benchmark [3], while C-IoU and boundary average precision (bAP)[1] are calculated between
the predicted polygon that overlaps the most with the ground truth (requiring a minimum of
0.5 overlap).

Our results show interesting trends across various perturbations. FFL [2] seems to rapidly
deteriorate in performance regardless of the perturbation type. Meanwhile, both PolyWorld
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Table 2: Robustness results on the small version of the Aicrowd dataset [5]
Model AP↑ AP50↑ AP75↑ AR↑ AR50↑ AR75↑ bAP↑ C-IoU↑ IoU↑ N-ratio PF

B
as

el
in

e GeoFormer 90.8 95.75 91.94 99.38 100.0 99.31 97.03 97.32 98.02 1.0 0
HiSup 70.33 88.43 76.53 96.7 99.82 99.52 67.41 89.71 94.19 1.0 0

PolyWorld 52.65 80.07 58.16 76.34 83.52 80.32 55.01 79.57 83.87 0.91 0
FFL 37.44 61.6 40.93 82.94 97.57 92.18 49.86 27.85 81.19 5.91 0

D
ow

ns
am

pl
e

HiSup 62.1 83.95 69.67 92.73 99.61 98.95 61.75 86.54 91.48 1.0 2
HiSup 56.65 80.13 63.62 88.91 99.16 97.88 57.22 83.11 88.81 1.0 3
HiSup 46.13 70.1 51.98 79.83 96.71 91.15 48.2 75.12 82.56 0.98 4

PolyWorld 45.34 71.83 50.44 64.03 75.29 68.19 48.23 71.43 78.39 0.84 2
PolyWorld 33.42 57.93 36.33 45.63 58.81 50.34 37.47 56.64 66.65 0.74 3

FFL 32.84 56.44 35.33 78.41 95.42 88.68 45.94 25.82 78.22 6.29 2
HiSup 32.59 55.31 35.29 65.68 87.38 76.64 37.6 63.51 72.55 1.01 5

GeoFormer 31.4 56.03 31.93 59.86 74.48 64.83 64.48 57.82 67.4 0.78 2
FFL 24.3 45.58 24.13 73.1 94.07 81.13 40.38 21.72 73.2 7.32 3

PolyWorld 20.71 39.25 20.81 27.67 37.53 30.66 25.37 38.1 49.73 0.57 4
GeoFormer 17.0 35.25 14.83 48.62 63.45 51.03 57.6 39.43 49.84 0.68 3

FFL 12.13 27.23 9.51 54.99 77.63 60.38 26.93 16.07 60.27 9.29 4
PolyWorld 10.54 22.12 9.12 17.99 25.86 18.99 15.36 21.82 32.88 0.42 5

GeoFormer 5.25 12.23 3.91 35.66 51.72 37.24 53.48 16.83 26.27 0.38 4
FFL 3.68 9.62 2.2 43.02 67.92 46.09 14.43 11.63 47.0 11.29 5

GeoFormer 1.51 3.83 1.11 24.69 36.55 24.14 52.69 8.92 15.52 0.29 5

D
ro

po
ut

GeoFormer 77.39 89.77 79.52 87.59 94.48 89.66 91.85 90.73 92.91 1.0 1
GeoFormer 66.04 82.09 69.5 79.52 93.79 81.38 87.26 84.27 87.73 0.98 2
GeoFormer 57.37 77.47 60.13 66.76 82.76 68.97 83.27 77.96 82.13 0.97 3

HiSup 56.97 75.73 61.13 83.65 93.18 85.29 60.91 77.05 82.62 1.11 1
HiSup 51.92 69.11 56.7 74.2 83.1 76.23 57.06 69.45 74.92 1.15 2

GeoFormer 50.49 72.34 53.17 59.66 83.45 58.62 80.52 74.38 79.31 0.93 4
HiSup 47.55 63.6 52.11 66.24 73.0 68.3 53.76 63.38 68.55 1.16 3

PolyWorld 46.95 74.81 50.46 69.36 81.46 73.68 51.0 73.77 79.33 0.88 1
HiSup 44.61 60.33 48.57 60.31 66.54 62.2 50.87 58.91 64.15 1.18 4

PolyWorld 44.2 71.32 47.4 61.14 75.97 64.07 48.94 70.08 76.43 0.85 2
PolyWorld 41.54 67.65 44.2 56.5 70.71 58.35 47.06 66.88 73.92 0.83 3
PolyWorld 39.59 65.33 41.98 47.8 63.39 49.43 45.1 63.08 70.73 0.8 4

FFL 33.12 56.57 35.0 77.63 95.69 87.87 47.78 26.41 78.4 6.32 1
FFL 30.39 53.21 31.68 71.37 94.61 79.25 46.0 25.5 75.79 6.56 2
FFL 27.89 49.64 28.7 64.31 89.49 66.85 44.33 24.79 72.87 6.85 3
FFL 26.27 47.08 26.65 58.01 84.64 60.65 43.09 24.3 70.58 6.9 4

R
ot

at
io

n

GeoFormer 70.52 93.32 80.72 98.48 99.31 99.31 83.62 91.98 92.64 1.0 3
HiSup 69.9 87.43 76.37 96.56 99.88 99.46 67.02 89.44 94.11 1.01 3

PolyWorld 51.33 78.99 57.49 74.16 81.84 79.54 54.09 78.1 82.94 0.9 3
GeoFormer 16.54 35.32 14.16 33.22 56.52 33.04 55.84 47.71 59.26 1.34 2
GeoFormer 15.82 33.47 13.36 35.26 56.14 42.11 55.82 46.91 58.28 1.36 1
GeoFormer 14.87 32.88 11.48 34.74 57.02 37.72 54.15 46.04 57.28 1.19 4
PolyWorld 14.54 29.47 13.61 19.84 33.24 21.8 18.12 30.37 45.86 0.42 1

HiSup 14.33 26.05 15.24 59.14 85.66 68.57 26.79 41.65 48.25 1.53 1
PolyWorld 14.3 29.18 13.35 19.84 31.88 22.34 18.18 30.65 46.17 0.44 4

HiSup 14.08 25.85 14.8 58.62 84.95 67.49 26.62 41.64 48.24 1.45 4
HiSup 14.05 25.92 14.8 58.51 84.82 67.93 26.6 41.89 48.78 1.53 2

PolyWorld 13.13 27.26 11.78 24.36 40.0 26.67 17.5 30.33 46.42 0.43 2
FFL 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.54 0.94 1.21 1
FFL 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.55 0.95 1.2 2
FFL 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.56 1.04 1.19 3
FFL 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.54 0.92 1.19 4
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Figure 1: Visual examples of perturbations performed to input images in the robustness
studies. From top row: downsampling, erased dropout, and rotations.

[9] and GeoFormer (our model) exhibit significant deterioration upon image downsampling,
as seen in Table 2 and Figure 2. In contrast, HiSup [8] also shows degradation in the down-
sampling scenario, but to a lesser extent. For rotation and dropout perturbations, GeoFormer
demonstrates stronger robustness compared to competing methods HiSup, PolyWorld, and
FFL. We also observe that GeoFormer is quite robust in terms of boundary average preci-
sion [1] in all scenarios except image downsampling, as illustrated in Figure 2 and Table 2.
Overall, GeoFormer is on par with or slightly better than competing methods in handling
image rotations, while it falls behind in scenarios involving image downsampling. However,
it excels relative to other methods in dealing with missing values. The latter is likely due
to masked training, while the robustness to rotations is attributed to rotation augmentations
during training. The reason for its underperformance in downsampling scenarios is likely
explained by the small feature map of 36x36 it needs to decode tokens from, but warrants
further investigation.

2.2 Visualising attention maps

We can visualise how the attention mechanism weights the image for each token st . This visu-
alisation involves projecting the normalised attention scores onto the input image, following a
bi-linear upsampling to match the image’s dimensions. We calculate the normalised scores
from ẑ by averaging across all M attention heads, as follows:
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Figure 2: Performance relative to perturbations performed on the Aicrowd small dataset. We
perform downsampling, rotations and random dropout. For downsampling a perturbation
factor of 2 would equate to a 2x lower spatial resolution, while for dropout, each perturbation
factor corresponds to 3%×perturbation factor of pixels that are erased, while for the rotations
the perturbation factor is the angles by which the input is rotated.
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Q = xW q,K = xW k (1)

ẑL =
1
M

M

∑
m=1

σ

(
Q(m)K(m)T

√
d

)
(2)

Here, Q is derived from the decoder tokens, and the keys K are represented as IF ∈
R36×36×C, which is the image feature map comprising 36×36 image patches with C hidden
dimensions. ẑL represents the averaged attention scores from the final layer of the decoder.

The visualisation is shown in Figure 3, where we display the attention maps for inferred
samples in token pairs. This means averaging over two consecutive token pairs, resulting
in each image being composed of an x,y-pair. The images include fully predicted polygons
in white, the input RGB image overlaid with attention scores, and a red star indicating
the predicted coordinate at the paired timestep st:t+1. We observe how the model shifts its
attention towards the area of the building object it aims to predict and how the attention shifts
upon the completion of the object, denoted by the special separator ||-token.
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Figure 3: Visualisation of the attention maps on top of the input image and predicted polygons
for pairs of tokens st:t+1 from the final layer of the GeoFormer decoder.
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