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A More Dataset and Implementation Details

A.1 Multi-domain Classification
Datasets. We fully verify the generalization performance of Mixstyle-Entropy on
three standard DG benchmarks: PACS [11], VLCS [7], and Office-Home [25] (1) PACS is
the most-widely used DG benchmark, exhibits significant distribution discrepancies across
different domains, which contains 9,991 images of 7 classes from four kinds of domain:
Photo, Art Painting, Cartoon, and Sketch. (2) VLCS contains 10,729 images of 5 classes
from four photographic domains: VOC 2007 [6], LabelMe [24], Caltech [8], and Sun [26].
(3) Office-Home is composed of 15,500 images of 65 classes from four domains: Artis-
tic, Clipart, Product, and Real World. The images are all collected from office and home
environments. Each domain represents a different visual environment and presents distinct
challenges, such as variations in lighting conditions, backgrounds, and object appearances.
Moreover, the Office-Home dataset is known for its large number of categories, which further
increases the complexity of the domain generalization task.
Implementation. For multi-domain classification, We implement our experiments mainly
based on the opensource toolboxes, i.e., Dassl.pytorch [29], including data preparation,
model training, and model selection. Specifically, we select ResNet18 and ResNet50 [9]
pre-trained on the ImageNet[5] as our backbones. All images are resized to 224×224. The
basic data augmentation consists of random horizontal flip and translation. During training,
the batch size is fixed at 64. The networks are trained using SGD with a momentum of 0.9
and weight decay of 5e-4 for 100 epochs. The initial learning rate is set to 0.002 and decayed
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by the cosine annealing rule. For EnIn, the cropped area ratio ofM is empirically set to 1
4 .

We insert the causal intervention module after the shallower layers, specifically block-1 and
block-2, as these layers contain a more abundant wealth of stylistic information. For HoPer,
we ensure consistent batch sizes during testing and training. Further, the prototype classi-
fier’s resource allocation is controlled using the entropy filter threshold β . We set β to four
times the testing batch size to form a stable generalized classifier early in the testing phase.

A.2 Semantic Segmentation
Datasets. GTA5 [21] is a synthetic dataset generated from Grand Theft Auto 5 game engine,
which includes 24,966 high-resolution synthetic game screenshots. Cityscapes [4] is a real-
world dataset collected from different cities in primarily Germany, which includes street
images from 50 German cities at different times, weather, and seasons.
Implementation. Consistent with prior cross-domain semantic segmentation approaches [12],
we employ the DeepLab-v2 [3] segmentation network with a ResNet-101 backbone. We use
SGD optimizer with an initial learning rate of 5×10−4, momentum of 0.9, and weight decay
of 10−4. Mean Intersection over Union (mIoU) and mean Accuracy (mAcc) of all object
categories are used for evaluation. We integrate the EnIn component after the backbone’s
block-1, block-2 and conducted ablation experiments to provide insights into the insertion
position.

A.3 Instance Retrieval
Datasets. Our experiment uses two commonly used Re-ID datasets: Market1501 [27] and
DukeMTMC [22]. The pedestrian images in Market1501 dataset The Market1501 dataset
contains pedestrian images from six campus cameras, annotated for a total of 1,501 pedes-
trians, among which 751 pedestrians are part of the training set while 750 are part of the
testing set. There are no overlapping pedestrian IDs between the training and testing sets,
which means that the 751 pedestrians in the training set do not appear in the testing set.
The DukeMTMC dataset contains a total of 36,411 images of 1,812 pedestrians. Among
them, 1,404 pedestrians are captured by more than two cameras, while 408 pedestrians are
only captured by a single camera. Since person re-identification is essentially a cross-camera
search task, these 408 pedestrians cannot be used for person re-identification and are included
in the dataset as distractors.
Implementation. To evaluate the model’s generalizability, we take one dataset as training
and test the performance on the other domain. Meanwhile, We evaluate the performance
using mean average precision (mAP) and ranking accuracy metrics. Following the previous
cross-domain Re-ID works [13, 29], we employ the Adam optimizer with an initial learning
rate of 3.5×10−4 and train for 50 epochs on ResNet-50. During training, the batch size is
fixed at 64 and the EnIn module is inserted after block-1, block-2, and block-3.

B More experiments

B.1 Multi-domain Classification
Results on VLCS. We conduct a consistent reproduction of the current mainstream augmentation-
based methods on ResNet-18 and ResNet-50, and compare them with Mixstyle-Entropy.
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The results indicate that the previous methods, in the case of challenging datasets like VLCS,
fail to achieve improvements in average accuracy and may exhibit performance degradation
in certain domains. In contrast, by successfully decoupling domain-related variables, we
achieve overall performance improvement. Detailed experimental results are reported in Ta-
ble 1 and Table 2.

Method VOC LabelMe Caltech Sun Avg (%)
ERM 73.7 ± 0.4 66.4 ± 0.5 91.2 ± 0.3 70.3 ± 0.5 75.4 ± 0.3
pAdaIN [17] 73.3 ± 0.3 66.2 ± 0.5 91.7 ± 0.6 69.3 ± 0.2 75.1 ± 0.4
Mixstyle [29] 73.1 ± 0.3 66.3 ± 0.3 91.7 ± 0.5 70.0 ± 0.4 75.3 ± 0.3
DSU [13] 74.1 ± 0.5 66.4 ± 0.6 90.8 ± 0.4 70.9 ± 0.4 75.5 ± 0.5
Ours 77.0±0.6 68.8±0.4 91.9±0.4 73.7±0.5 77.8±0.4

Table 1: Generalization results (%) of VLCS benchmark on ResNet-18.

Method VOC LabelMe Caltech Sun Avg (%)
ERM 77.1 ± 0.4 67.2 ± 0.4 92.2 ± 0.3 73.9 ± 0.4 77.6 ± 0.2
pAdaIN [17] 78.0 ± 0.5 67.6 ± 0.4 91.7 ± 0.6 72.5 ± 0.3 77.5 ± 0.4
Mixstyle [29] 78.3 ± 0.5 68.3 ± 0.3 91.5 ± 0.5 72.0 ± 0.4 77.5 ± 0.4
DSU [13] 77.3 ± 0.6 66.8 ± 0.5 92.4 ± 0.4 74.6 ± 0.3 77.8 ± 0.5
Ours 79.9±0.3 70.0±0.4 93.0±0.5 75.4±0.4 79.6±0.4

Table 2: Generalization results (%) of VLCS benchmark on ResNet-50.

Results on Camelyon17. Considering multiple factors such as imaging devices, medical
image analysis is highly susceptible to domain shift, with protocols causing significant do-
main transfer. However, due to the complex and challenging data distribution, there is a
lack of reported experiments on DG for medical images. We validate the performance of
our model on the challenging Camelyon17 [1], which comprises images from five medical
centers. This dataset consists of pathological images as input and labels indicating whether
the central region contains any tumor tissue. Given the lack of reported performance in the
current literature, we conduct experiments from scratch using the WILDS [10] and directly
use the official implementation of each method without any modifications. Table 3 provides
evidence of the effectiveness of our model. Compared to the baseline or other methods,
Mixstyle-Entropy achieves impressive improvements. This suggests that by causality
modeling, even with highly challenging medical data, Mixstyle-Entropy can facilitate
the induction of more generalizable models.

Method H1 H2 H3 H4 H5 Avg (%)
ERM 95.3 ± 0.4 91.4 ± 0.3 89.5 ± 0.3 96.2 ± 0.2 94.6 ± 0.4 93.4 ± 0.4
Mixstyle [29] 96.0 ± 0.2 91.2 ± 0.3 93.1 ± 0.4 94.9 ± 0.3 92.9 ± 0.4 93.6 ± 0.4
pAdaIN [17] 96.3 ± 0.3 93.1 ± 0.4 94 .7 ± 0.5 95.1 ± 0.5 94.1 ± 0.4 94.7 ± 0.5
DSU [13] 96.6 ± 0.7 93.1 ± 0.6 91.7 ± 0.7 96.2 ± 0.4 94.1 ± 0.7 94.3 ± 0.7
Ours 96.8±0.4 94.2±0.5 94.9±0.7 96.9±0.4 95.7±0.5 95.7±0.6

Table 3: Rresults on Camelyon17. H1-H5 represents different hospitals.

Effect of insert position. We conduct further exploration regarding the insertion position of
the EnIn module. Due to the dependence on slicing the feature map, the selection ofM re-
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quires its insertion into a shallower layer of the network. We arrange different combinations
of the number and position of insertion layers, and the results for the classification task are
depicted in Figure 1(a) and Figure 1(b). Taking ResNet as an example, 0 represents insertion
after the original image, while 1, 2, and 3 correspond to insertion after block-1, block-2, and
block-3, respectively. It can be observed that blocks-1 and blocks-2 in the network stack
exhibit better overall performance in the presence of causal interventions. This is attributed
to the fact that deeper-level features contain less domain-related information, which hinders
feature decoupling.

((a)) PACS ((b)) Office-Home ((c)) GTA5

Figure 1: The effect of EnIn insertion location on model generalization performance.

Effect of blending intensity. In Mixstyle-Entropy, only a few hyperparameters re-
quire adjustment. For the mixture ratio of instance-wise mean and variance, we sample from
the beta distribution. As illustrated in Table 4, we conduct experiments on ResNet-18 and
ResNet-50 to explore the blending intensity of instance characteristic statistics. Overall, an
appropriate value for this parameter is 0.1, and it remains robust across networks of different
depths and datasets.

(a) Performance of ResNet-18
α PACS Office-Home Avg

0.05 86.5 ± 0.3 69.1 ± 0.2 77.8 ± 0.2
0.1 86.7 ± 0.4 69.1 ± 0.3 77.9 ± 0.3
0.2 86.4 ± 0.3 68.9 ± 0.4 77.7 ± 0.3
0.3 86.2 ± 0.2 68.4 ± 0.3 77.3 ± 0.4
0.4 85.7 ± 0.4 68.6 ± 0.2 77.2 ± 0.3
0.5 85.6 ± 0.3 68.2 ± 0.4 76.9 ± 0.2

(b) Performance of ResNet-50
α PACS Office-Home Avg

0.05 89.7 ± 0.3 74.0 ± 0.4 81.9 ± 0.4
0.1 89.9 ± 0.2 74.4 ± 0.4 82.2 ± 0.3
0.2 90.1 ± 0.3 74.3 ± 0.3 82.2 ± 0.2
0.3 89.5 ± 0.3 73.8 ± 0.2 81.7 ± 0.3
0.4 89.4 ± 0.4 73.5 ± 0.3 81.5 ± 0.3
0.5 89.1 ± 0.3 73.5 ± 0.4 81.3 ± 0.4

Table 4: The effect of blending intensity in EnIn on classification.

Effect of prototype classifier size. During the testing phase, after applying the HomeoScore
filter, we are able to obtain feature representations that are closer to the centroids of the
classes. These representations are used to construct the prototype classifier, where the sam-
ples are selected based on lower entropy values. We conduct experiments on the robustness
of the prototype classifier’s size using multiples β of the testing batch size, which is a more
intuitive scale choice. The results, as shown in Table 5, indicate that smaller classifier sizes
are not conducive to finding the optimal prototypes. When β ≥ 2, the model’s generalization
performance improves significantly, and this holds true across different network depths and
datasets. Therefore, we can make a sensible choice of classifier size based on the specific
deployment environment.
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(a) Performance of ResNet-18
β PACS Office-Home Avg
1 87.7 ± 0.4 69.9 ± 0.3 78.8 ± 0.3
2 88.5 ± 0.5 70.5 ± 0.3 79.5 ± 0.2
3 89.0 ± 0.3 70.5 ± 0.2 79.8 ± 0.2
4 88.6 ± 0.4 70.4 ± 0.4 79.5 ± 0.3
5 88.5 ± 0.2 70.0 ± 0.3 79.3 ± 0.4

(b) Performance of ResNet-50
β PACS Office-Home Avg
1 89.9 ± 0.5 75.5 ± 0.3 82.7 ± 0.4
2 90.4 ± 0.3 75.6 ± 0.5 83.0 ± 0.4
3 90.9 ± 0.4 75.7 ± 0.4 83.3 ± 0.2
4 91.0 ± 0.4 75.7 ± 0.6 83.4 ± 0.5
5 90.7 ± 0.3 75.9 ± 0.4 83.3 ± 0.3

Table 5: The effect of prototype classifier size in HoPer on classification.

Visualization. In the EnIn module, we propose the computation of feature entropy, which
is different from similar approaches like CAM [28] that directly utilize the label to visualize
feature activations. The key distinction lies in our avoidance of direct label utilization, as it
often introduces correlations between objects and domains [15]. As shown in Figure 2, we
visualize the early-stage feature maps during the network training. The first row displays the
original images, the second row depicts CAM (with bright areas indicating higher values),
and the third row showcases the feature entropy within the EnIn process (with bright ar-
eas representing lower values). Through visual observation, it becomes apparent that direct
modeling of the label fails to harness the generalization capabilities of pretrained weights on
ImageNet [5], leading to overconfidence or erroneous focus. Conversely, by considering en-
tropy, we gain a clear understanding of the overall attention of the network towards features,
rather than specific classes. Interestingly, regions with high entropy tend to concentrate in
the background, which aligns with the notion of domain-related information as suggested by
previous works [2, 16].

B.2 Semantic Segmentation
Effect of insert position. In the context of semantic segmentation, we also explore the
placement of the EnIn module, and the findings are similar to those in the classification task.
Specifically, when inserted after block-1 and block-2, the model’s generalization ability sig-
nificantly improves. Additionally, since segmentation involves dense pixel-level predictions,
applying the EnIn operation after the original image can be seen as providing additional styl-
ized augmentation, further enhancing the performance. The specific mIoU is presented in
Figure 1(c).
Effect of blending intensity. As shown in Table 6, similar to the multi-domain classification
task, the model exhibits better generalization performance when α takes on a smaller value.
We fix it at 0.1 across all tasks and datasets.

α 0.05 0.1 0.2 0.3 0.4 0.5
mIoU (%) 42.5 ± 0.4 42.6 ± 0.5 42.4 ± 0.3 41.9 ± 0.4 41.7 ± 0.3 41.6 ± 0.5
mAcc (%) 53.3 ± 0.2 53.7 ± 0.3 53.8 ± 0.3 53.0 ± 0.2 52.7 ± 0.4 52.3 ± 0.3

Table 6: The effect of blending intensity in EnIn on segmentation.

Visualization. The visualization of semantic segmentation is presented in Figure 3, where
we compare it with MxiStyle and DSU. It is evident that previous approaches struggle to
accurately segment regions with similar features, such as shrubs and lawns, sidewalks and
roads. However, EnIn successfully decouples domain-related and class-related information
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((a)) ((b)) ((c)) ((d)) ((e))

Figure 2: The visualization between Visible Entropy and CAM.

at the embedding level using feature entropy. This enables the extraction of causal variables
for predicting the correct category, resulting in more precise segmentation.

C Theoretical Insights

C.1 Additional Definitions
Normalizing features with instance-specific mean and standard deviation has been found
effective for removing image style. Given batch level feature maps x ∈ RB×C×H×W of the
network, with B,C,H and W denoting the dimension of batch, channel, height and width,
respectively. We can formulate the instance-specific feature statistics mean µ ∈RB×C as:

µ(x) =
1

HW

H

∑
h=1

W

∑
w=1

xb,c,h,w, (1)

and standard deviation σ ∈RB×C of each instance in a mini-batch can be formulated as:

σ(x) =

√
1

HW

H

∑
W

∑(xb,c,h,w−µ(x))
2
. (2)

The network receives randomly sampled input x and generates the corresponding feature
g(x). When the domain label is unavailable, g̃(x) is created by shuffling the order of samples
in the current batch, forming a new reference batch. This operation, referred to as shuffle, is
represented as follows:

g̃(x) = shuffle(g(x)). (3)



LUYAO TANG ET AL: DG VIA CAUSAL INTERVENTION AND PERTURBATION 7

(a) Unseen domain (b) Mixstyle (c) DSU (d) EnIn (Ours) (e) Ground truth

Figure 3: Visualization of segmentation results for the task GTA5→ Cityscapes.
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Algorithm 1 The algorithm of the training phase: EnIn

Input: Intermediate feature in a mini-batch g(x) ∈RB×C×H×W , shuffled feature g̃(x), local
feature vector vi, classifier weight W.
Output: Intermediate feature ĝ(x) ∈RB×C×H×W after EnIn.
Step1. Feature entropy extraction:

Compute feature entropy maskM.
Compute final prediction scores F for K classes:
F = 1

hw∑i W
⊺vi =

1
hw∑i F̂i.

Local class probability at location i:
p̂i = softmax(F̂i).

Compute the Shannon entropy:
H (p̂i) = −∑

K
k=1 p̂i(k) log p̂i(k).

Generate the feature entropy mask, choose the region with maximum and minimum
entropy:
M =Normalize(H (p̂i)),
Mmax

crop =maxMcrop for allMcrop ∈M ,
Mmin

crop =minMcrop for allMcrop ∈M.
Step2. Feature causal intervention:

Sample p ∼U(0,1).
if p < 0.5 and Training then

Compute the channel-wise mean and standard deviation of each instance in a mini-
batch:

µ(g(x)) = 1
HW ∑

H
h=1∑

W
w=1 g(x),

σ(g(x)) =
√

1
HW ∑

H
h=1∑

W
w=1 (g(x)−µ(g(x)))2.

Calculate mixed feature statistics for the region with maximum and minimum entropy:

γ̃mix = λσ(g(x))+(1−λ)σ(M̃max
crop⊙ g̃(x)) β̃mix = λ µ(g(x))+(1−λ)µ(M̃max

crop⊙ g̃(x)),

γmix = λσ(g(x))+(1−λ)σ(Mmin
crop⊙g(x)) βmix = λ µ(g(x))+(1−λ)µ(Mmin

crop⊙g(x)),

λ ∼Beta(α,α).
Obtain the feature after EnIn:
Case 1: g̃(x) =M⊙g(x)+ γ̃mix

g(x)−µ(g(x))
σ(g(x)) + β̃mix,

Case 2: g̃(x) = γmix
g(x)−µ(g(x))

σ(g(x)) +βmix.
return g̃(x).

else
adopt the original feature g(x) and skip this module.
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Algorithm 2 The algorithm of the testing phase: HoPer

Input: Feature generator gθ , the batch of data xt, and memory bank B at test time t.
Output: Prediction for xt.
Obtain feature presentation gθ (xt), prediction score pt and corresponding pseudo-label yt .
Perform the similar feature transformation as EnIn:

g′(xt) = γmix
g(xt)−µ(g(xt))

σ(g(xt)) +βmix.
Obtain prediction score p′t and corresponding pseudo-label y′t .
Calculate HomeoScore:

HomeoScore = (∑k
j=1 ∣p

j
t − p j

t
′∣

2
)

1
2
.

Adjust memory bank:
Bk

t =Bk
t−1∪{

g′(xt−1)
∥g′(xt−1)∥} for y′(t−1) = yk and HomeoScore < α ,

Bk
t = {g

′(x) ∣ g′(x) ∈Bk
t ,H(p

′) ≤ β}.
Predict based on feature similarities to prototypes for class k:

yk
j =

exp(sim(g j(xt),ck))
∑∣Y ∣k′=1

exp(sim(g j(xt),ck′))
for all xt ∈ xt.

return yk
j.

C.2 Structural Causal Graph
Three perspectives exist regarding the relationship between internal feature elements and
class labels in the context of classification tasks. As discussed by previous works [14, 23],
the first perspective suggests that the true class labels determine the features observed in the
data. On the other hand, according to some analysis [19, 23], it is the features that lead to
the labels. MatchDG [15] acknowledges that both mechanisms are possible, where the true
class label Ytrue determines these features, but it remains unobserved. The observed features
are then utilized to assign a class label Y to each input.

In the context of supervised learning, we acknowledge that labels are manually anno-
tated, and this process inevitably introduces biased information. Within a single image, there
may exist multiple objects of different classes, yet only one class can be annotated. Further-
more, objects belonging to the same class may be assigned different class labels due to their
diverse distributions. Since our network optimization relies on the class label Y , we construct
a causal graph that explicitly includes Y and implicitly represents the correlation between O
and D. We choose not to explicitly model the parent nodes of O and D, as the generative
mechanisms of these two variables are not fixed and cannot be regarded as unrelated [2].

C.3 D-separation
Let X ,Y,Z be the three non-intersecting subsets of nodes in a causal graph. Interpreting these
three types of junctions in Figure 4 holds significant importance, as all Bayesian networks
(or causal graphs) can be decomposed into combinations of different junction modules.

The first type of structural linkage, known as head-to-tail, as the name suggests, allows
information to flow from one end to the other, resembling a chain. In the second type, called
tail-to-tail or forked linkage, we can see that the two arrows resemble a fork. Most impor-
tantly, the third type, called reverse fork or head-to-head linkage, resembles two colliding
asteroids, with information flowing into the middle node.
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X Y

Z

(a) chain

X Y

Z

(b) fork

X Y

Z

(c) inverted fork (collider)

Figure 4: D-separation

If two nodes are located at opposite ends of a pathway and there is information flow
towards both nodes or from one node to the other, then these two nodes are considered to be
interconnected [18]. In the context of chain, if information flows from node X through node
Z to node Y , then nodes X and Y are considered to be interrelated (i.e., not independent). In
the case of fork, if information flows from node Z to both node X and node Y , then nodes X
and Y are not independent. In the case of colliding, if information flows from nodes X and
Y to node Z, and a collision occurs at node Z, then node Z is also referred to as a collider. In
this scenario, both X and Y influence Z, but there is no information flowing from Z to either
X or Y , thus X and Y are mutually independent. If all paths from X to Y are blocked, then X
is d− separated from Y by Z: dsep(X ,Y,Z)⇒ X áY ∣Z.

C.4 Invariance Conditions

Like the SCM (a) depicted in Figure 1 in the main text, let XO denote an unobserved higher-
level feature that is exclusively relevant to object generation and forms an optimal classifier.
We acknowledge that XO á D∣O. For the necessary condition of domain-invariant repre-
sentation, g(x) á D is required. However, by employing the d-separation criterion on the
SCM, we can infer XO ̸ D. Similarly, for domain-invariant representation conditioned on
the class, the required condition is g(x) á D∣Y . Nonetheless, through d-separation, we dis-
cover that XO ̸ D∣Y , regardless of whether the relationship between O and D is explicitly
modeled. Therefore, naturally, neither XO nor any function of XO is the optimal solution.
To attain the optimal solution, additional assumptions such as an infinite number of samples
are required, which are infeasible. Hence, we can solely rely on the causal relationships
during the training process, leveraging feature representation entropy to extract and utilize
inter-variable independence, thus approaching the performance upper bound. The algorithm
of the proposed method is illustrated in Algorithm 1 and 2.

D Discussion
The potential of HomeoScore. In the main text, we mentioned the incorporation of sam-
ples with lower HomeoScore values into the construction of the prototype classifier. This ap-
proach, compared to the traditional method of using classification entropy for filtering, lever-
ages the greater distribution variance of HomeoScore values to exclude erroneous pseudo-
labels and prevent performance degradation. In fact, HomeoScore holds immense potential

Citation
Citation
{Pearl} 2009



LUYAO TANG ET AL: DG VIA CAUSAL INTERVENTION AND PERTURBATION 11

for broader applications, such as anomaly detection and open-set recognition. By enhancing
the class-related variables in sample features, samples that deviate from the distribution typ-
ically lack stable causal features, resulting in greater prediction fluctuations. By comparing
their HomeoScore values with those of normal samples within the distribution, it is possi-
ble to partially identify anomalous samples or filter out other classes not known during the
testing process.
Future research directions. Mixstyle-Entropy has achieved impressive advance-
ments across multiple tasks, datasets, and different models. Building upon this foundation,
there are several promising directions for future integration and improvement. For instance,
the implementation framework of decoupling feature entropy can be explored, extending its
application to various types of networks such as ViT and MLP. Based on these theoretical
underpinnings, such extensions are feasible. Furthermore, our proposed approach does not
require extra training parameters. With the continuous development of TTA techniques and
improving hardware performance, combining test-time training with the prototype classifier
presents an intriguing direction. Leveraging more accurate pseudo-labels during testing to
guide the model towards improved performance on the target domain warrants further dis-
cussion. Additionally, introducing multimodal information [20] into the process of causal
intervention, blocking domain-related variables in another modality, is also worth exploring.
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