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Abstract

DETR has set up a simple end-to-end pipeline for object detection by formulating
this task as a set prediction problem, showing promising potential. Despite its notable
advancements, this paper identifies two key forms of misalignment within the model:
classification-regression misalignment and cross-layer target misalignment. Both issues
impede DETR’s convergence and degrade its overall performance. To tackles both is-
sues simultaneously, we introduce a novel loss function, termed as Align Loss, designed
to resolve the discrepancy between the two tasks. Align Loss guides the optimization
of DETR through a joint quality metric, strengthening the connection between classi-
fication and regression. Furthermore, it incorporates an exponential down-weighting
term to facilitate a smooth transition from positive to negative samples. Align-DETR
also employs many-to-one matching for supervision of intermediate layers, akin to the
design of H-DETR , which enhances robustness against instability. We conducted ex-
tensive experiments, yielding highly competitive results. Notably, our method achieves
a 49.3% (+0.6) AP on the H-DETR baseline with the ResNet-50 backbone. It also
sets a new state-of-the-art performance, reaching 50.5% AP in the 1× setting and 51.7%
AP in the 2× setting, surpassing several strong competitors. Our code is available at
https://github.com/FelixCaae/AlignDETR.
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Figure 1: Left: Intersection over Union (IoU) distribution of two types of samples. There
is a notable gap between best regressed samples (oracle) and the high confident samples,
indicating a discrepancy between these two tasks. Right: The convergence curve of Align-
DETR and DINO where Align-DETR converges faster significantly.

1 Introduction

Recently, transformer-based methods have garnered significant attention in the object de-
tection community, largely due to the introduction of the DETR paradigm by [1]. Unlike
previous CNN-based detectors [24, 33, 48, 53], DETR approaches object detection as a
set prediction problem, utilizing learnable queries to represent each object in one-to-one
correspondence. Such unique correspondence derives from bipartite graph matching by
means of label assignment during training. It bypasses hand-crafted components such as
non-maximum suppression (NMS) and anchor generation. With this simple and extensible
pipeline, DETR shows great potential in a wide variety of areas, including 2D segmenta-
tion [3, 4, 19], 3D detection [27, 30, 41], in addition to 2D detection [8, 13, 26, 37, 45, 54].

During the past few years, the successors have advanced DETR in many ways. For
instance, some methods attempt to incorporate local operators, such as ROI pooling [37] or
deformable attention [8, 54], to increase the convergence speed and reduce the computational
cost; some methods indicate that those learnable queries can be improved through extra
physical embeddings [25, 29, 40]; and some methods [2, 14, 17, 45] notice the defect of
one-to-one matching and introduce more positive samples by adding training-only queries.
Box refinement [37, 45, 54] is another helpful technique, which explicitly takes previous
predictions as priors at the next stages.

Despite the recent progress in DETR-based detectors [1, 8, 13, 22, 25, 45, 54], the mis-
alignment problem of DETR has received insufficient attention. There are two key aspects
to this misalignment issue in recent DETR-like methods. Firstly, there exists a misalign-
ment between classification confidence and localization precision, stemming from incon-
sistent loss design. This discrepancy is highlighted through an analysis conducted on the
output of a prominent end-to-end detector, DINO [45], revealing a significant dissonance
between high-confidence samples (HC samples) and best-regressed samples (BR samples),
as depicted in Fig. 1 (Left). Such a discrepancy significantly impacts model performance,
particularly in ranking-based metrics such as mean average precision (mAP). Secondly, there
is a misalignment in training targets across layers. This arises from the dynamic matching
design of DETR [17, 26, 45], wherein samples are assigned different targets in different lay-
ers, leading to confusion within the optimizer, as highlighted by Stable-DINO [26]. These
misalignment issues impede the convergence of DETR and hinder it from realizing its full
potential as shown in Fig. 1 (Right).
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The current solutions to the misalignment problem in DETR-like methods typically ad-
dress either the first misalignment issue [15, 21, 46] or the second [26, 45]. To tackle both
simultaneously, we introduce a novel approach called Align-DETR. It makes use of the stan-
dard focal loss [24] with an IoU-aware target on foreground samples, which we term the
Align Loss. To overcome the first misalignment problem, Align Loss dynamically adjusts
the target for foreground samples according to their classification confidence and regression
precision thus they are aligned during optimization [26]. For the second problem, Align-
DETR enlarges the range of positive samples by adopting a mixed-matching strategy. This
approach allows multiple candidates to be considered for each ground truth. Subsequently,
to mitigate conflicts arising from this expanded range of positive samples, the targets of the
additional positive samples are smoothed using an exponential weight decay. By incorpo-
rating these mechanisms, Align-DETR aims to effectively address both misalignment issues
encountered in DETR-based detectors.

Overall, Align-DETR offers a straightforward yet effective solution to the misalignment
problem, enhancing DETR with aligned training targets. Equipped with a ResNet-50 [11]
backbone and a H-DETR [14] baseline, our method achieves +0.6% AP gain. We also com-
bine it with the strong baseline DINO [45] and establish a new state-of-the-art performance
with 50.5% AP in the 1× and 51.7% AP in 2× setting on the COCO [23] validation set.

2 Related Work

2.1 Label Assignment in Object Detection

As the CNN-based object detectors develop from the anchor-based framework to the anchor-
free one, many works realize the importance of label assignment (which is previously hidden
by anchor and IoU matching) during training. Some works [9, 16, 48] identify positive
samples by measuring their dynamic prediction quality for each object. Others [7, 20, 21, 53]
learn the assignment in a soft way and achieve better alignment on prediction quality by
incorporating IoU [21, 46] or a combination of IoU and confidence [7, 20, 53].

The misalignment problem in object detection has been addressed by various tradi-
tional solutions, such as incorporating an additional IoU branch to fine-tune the confidence
scores [15] or integrating the IoU prediction branch into classification losses [21]. In con-
trast, the misalignment problem in DETR is under-explored, despite it sharing some ideas
from CNN-based detectors. However, the optimization target between many-to-one and one-
to-one is the key difference as we will illustrate in the next section.

2.2 End-to-end Object Detection

The pursuit of end-to-end object detection or segmentation dates back to several early efforts
[32, 35, 36]. They rely on recurrent neural network (RNN)[35] to remove duplicates or adopt
complex subnets [32, 36] to replace NMS. Different from them, DETR [1] has established a
set-prediction framework based on the transformer [38]. Compared to previous work, DETR
is rather simpler but still suffers from the downside of slow convergence with a number of
subsequent DETR variants [6, 8, 17, 25, 37, 45] working on this issue. Some methods make
improvements on the cross-attention in decoders [6, 29]. Deformable DETR [54] presents a
deformable-attention module that only scans a small set of points near the reference point,
while AdaMixer[8] further extends the 2D offset to 3D for better multi-scale feature fusion.
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Besides, some works also pay attention to improve the inference efficiency of DETR [18,
39, 42, 51, 52]. Efficient DETR [42] advocates for a 1-layer-only decoder structure to largely
reduce the computation burden by initializing the query precisely. Notably, RT-DETR [51]
represents a significant advancement by enabling real-time inference for DETR, surpassing
the performance of other rapid detectors such as the YOLO series series [10].

The optimization of DETR also attracts the attention of many researchers [17, 26, 45].
Specifically, DN-DETR [17] relies on a denoising mechanism to stabilize the training, which
is further refined by DINO [45] through introducing a contrastive denoising mechanism. Ad-
ditionally, Stable-DINO [26] introduces a position-guided loss that mitigates the instability
incurred by a standard loss, i.e. focal loss[24]. Meanwhile, a few recent studies have noticed
limitations of one-to-one matching and have proposed many-to-one assigning strategies to
ameliorate DETR regarding training efficiency. Group-DETR [2] and H-DETR [14] acceler-
ate the training process with multiple groups of samples and ground truths. DAC-DETR[13]
proposes a decoupled training strategy that focuses on the learning of cross-attention layers
with many-to-one matching.

Despite the strides made, it is evident that many contemporary approaches [2, 13, 14,
17, 45] either overlook the misalignment issue highlighted earlier or offer only partial reme-
dies [26]. In contrast to these approaches, our work offers a comprehensive and unified
solution to address this challenge consistently.

3 Method

3.1 Preliminaries
DETR. The original DETR [1] framework consists of three main components: a CNN-
backbone, an encoder-decoder transformer [38], and a prediction head. The backbone pro-
cesses the input image first, and the resulting feature is flattened into a series of tokens
X = {x1,x2, ...,xm}. Then the transformer extracts information from X with a group of learn-
able queries Q = {q1,q2, ...,qn} as containers. At last, the updated queries are transformed
into predictions P = {p1, p2, ..., pn} through the prediction head. In most cases, m is much
less than n, making DETR a sparse object detection pipeline.

The focal loss [24] is adopted by DETR in classification optimization to help focus on
important samples. Given a binary label y ∈ {0,1} and a logit p ∈ [0,1], it is defined as:

L f ocal =−y · (1− p)γ · logp− (1− y) · pγ · log(1− p), (1)

where γ is the hyper-parameter to control the degree of weight decay.
DETR adopts the one-to-one label assignment on all layers to help eliminate redundant

predictions. However, this strategy is inefficient compared to many-to-one label assignment
used in CNN-based detectors[33, 48, 53]. To overcome this issue, H-DETR[14] proposes
a hybrid layer matching strategy that applies many-to-one matching on some shallow layers
and one-to-one matching on deep layers. Hybrid matching ensures DETR’s final outputs are
unique while it allows more efficient training on intermediate layers.

3.2 Motivation and Framework
The motivation for the proposed Align-DETR comes from the hypothesis that a consistent
and aligned optimization target can benefit the training of object detectors like DETR [17,
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26, 45, 54]. There are two concerns for the current optimization method: (i) the alignment
between classification and regression is essential for the optimization of DETR, which is not
considered in current design and (ii) the matching mechanism of DETR is unstable across
layers. To mitigate the concerns, we propose a unified solution, namely Align-DETR.

We illustrate our framework in Fig. 2 and introduce the detailed implementations in the
following sections. Overall, our key insight is to design a dynamic and accurate training tar-
get for DETR. For the first concern, we build a strong connection between the classification
and regression by adopting a regression-aware classification loss. To mitigate the second
issue , we adopt many-to-one matching along with a ranking & weighting strategy. In this
way, both of the two misalignment issues can be solved jointly.

Figure 2: The architecture overview of the proposed approach Align-DETR . Align-DETR
adopts many-to-one matching where each GT is assigned multiple queries. These queries
are sorted according to their quality . Then, we compute an alignment score for each query
according to their rank, classification confidence and IoU with the GT. The alignment score
is used in the loss computation for both classification and regression.

3.3 Align-DETR
Driven by the aforementioned concerns, our objective is to enhance the optimization of
DETR by addressing the misalignment issue. Initially, we present our matching strategy,
followed by the introduction of our proposed loss function, denoted as the Align Loss. This
sequential approach is aimed at systematically mitigating misalignment and thereby improv-
ing the overall efficacy of DETR optimization.

Mixed Matching and Ranking Strategy. DETR [1] and most of its variants [29, 54]
adopt Hungarian Matching to learn a unique association between GT and predictions. How-
ever, this approach assigns only one positive sample for each GT annotation, rendering it
susceptible to the instability inherent in matching, as noted in previous works [26, 45]. To
address this challenge, we propose a gradual transition from positive to negative samples
which involves implementing a mixed-matching and ranking strategy.

Given predictions P and ground truth G, each comprising N instances, we employ a mod-
ified version of Hungarian Matching to assign k predictions to each ground truth, resulting
in a total of kN matched samples, termed candidates. These candidates are subsequently
arranged based on their distances from the GT. We propose defining a quality metric q as
inspired previous studies [5, 53], which represents the geometric average of classification
accuracy (p) and regression precision (u):

q = pα ·u(1−α), (2)
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where p denotes the binary classification score, u signifies the IoU between the predicted
bounding box and the ground truth, and α serves as a hyper-parameter to balance these
factors. We denote the ranking of each candidate as r ∈ {0,1,2,3,k− 1}. We set k > 1 for
intermediate predictions and expect the change of matching happens within a candidate bag.
As for the last decoder layer, we set k = 1 for one-to-one association.

Align-DETR shares some similarities with H-DETR [14] but diverges in both motivation
and implementation: (a) While H-DETR utilizes many-to-one matching primarily to expe-
dite convergence, we employ it to ensure consistent optimization across layers; (b) H-DETR
treats all positive samples equally, whereas we introduce an adaptive target mechanism, as
detailed in Section 3.3.

Align Loss. To promote more consistent and efficient optimization, we outline two guid-
ing principles to inform the loss design of DETR. Firstly, the target of the classification loss
should be adaptive and position-guided, echoing findings in prior literature [26]. Secondly,
there should be a smooth transition from positive samples to negative samples.

In accordance with these principles, we propose a straightforward yet effective loss func-
tion for DETR, defined as follows:

Lalign =−tc · (1− p)γ · logp− (1− tc) · pγ · log(1− p), (3)

wherein the hard label y in Eq. 1 is substituted with a soft target tc. As shown in Eq. 3,
adjusting tc from 1 to 0 makes a smooth transition from a positive target to a negative target.
This property makes it perfectly compatible to achieve a transition between positive sample
and negative sample. We define tc as follows :

tc = e−r/τ ·q, (4)

where e−r/t τ is an exponential down-weighting term controlled by a hyper-parameter τ .
By associating the tc with the joint quality, Align Loss can guide the learning of classifica-
tion with regression precision simultaneously and thus build a strong connection between
these two tasks [5, 49]. In the literature, [26] employs a position-supervised classification
loss to establish a unified optimization framework, which bears similarities to our approach.
However, our method approaches the problem from a distinct perspective, emphasizing the
alignment of the two tasks. Thus, we utilize the classification confidence in tc, which our
experiments in Section 4 have validated as crucial. Another noteworthy distinction lies in
our identification of misalignment in the classification target across layers due to the unstable
matching phenomenon. This issue is addressed in our method through a gradual positive-to-
negative transition.

Given that the Align Loss functions as a "soft" variant of focal loss [24], seamlessly
integrating with any DETR-variant compatible with focal loss is feasible. To leverage this
capability, we propose an asymmetric classification loss by applying Align Loss on selected
candidates and focal loss on background samples:

Lcls =
Npos

∑
i
Lalign(pi,yi)+

Nneg

∑
j
L f ocal(p j,0), (5)

where Npos and Nneg denote the number of total positive samples and negative samples,
respectively.

In the context of regression tasks, though not obviously influenced by the misalignment
issue aforementioned, we opt to implement a regression loss consistent with Align Loss.
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This helps achieves a consistent optimization in both tasks. Given predicted bounding box
bi and GT box b̂i , our regression loss is defined as follows:

Lreg =
Npos

∑
i

e(−ri/τ) · (Ll1(bi, b̂i)+LGIoU (bi, b̂i)) (6)

Ultimately, our loss is defined as:

L=
L−1

∑
l=1

Ltask(Pl ,G(k))+Ltask(P,G), (7)

where Ltask is a weighted combination of classification loss Lcls and Lreg [1], G(k) is an
augmented version of GT by copying k times and L is the total number of decoder layers.

In summary, the Align-DETR introduces an Align Loss along with a matching strategy
to solve the misalignment issue for higher precision on localization of DETR. Without loss
of generality, our method can be integrated into any DETR-like architecture.

4 Experiments

4.1 Setup
Datasets. We conduct all our experiments on MS-COCO 2017 [23] Detection Track and
report our results with the mean average precision metric on the validation dataset.

Implementation details. We use DINO [45] as the baseline method, along with their
default hyper-parameter settings. The DINO baseline adopts deformable-transformer [54]
and multi-scale features as inputs. For the hyper-parameters introduced in Align-DETR, we
set k = 4, α = 0.25, and τ = 1.5. To ensure a fair comparison with recent methods [13, 26,
45], we train Align-DETR for 1× and 2× schedules. We implement our methods with the
help of open-source library detrex [34]. To optimize the model, we set the initial learning
rate to 1×10−4 and decay it by multiplying 0.1 for backbone learning. We use AdamW [28]
as the optimizer with 1×10−4 weight decay and set batch size to 16 for all our experiments.

4.2 Main Results
We conduct experiments using DINO [45] and H-DETR [14] as the baselines, which adopts
the deformable-transformer as the backbone. DINO uses tricks such as CDN, look forward-
twice, and bounding box refinement for better performance. We follow DINO’s approach
and adopt its tricks. Regarding to backbone, we use an Resnet-50 (R-50) [11] backbone with
4-scale features (P3, P4, P5, and P6) as input.

The results are presented in Tab. 1 and Tab. 2. Despite the highly optimized structure of
DINO [45], our method still outperforms it by 1.5% and 1.3% AP in 1× and 2× schedules,
respectively. This indicates that even the advanced DETR-variant can be affected by the
misalignment problem. Then we compare Align-DETR to two recent state-of-the-art meth-
ods, DAC-DETR [13] and Stable-DINO [26], and find that Align-DETR achieves higher
AP while using fewer tricks such as memory fusion, demonstrating its superior effective-
ness. It’s noteworthy that Align-DETR exhibits highly competitive performance, particu-
larly in detecting small objects. In this domain, it surpasses Stable-DINO by 1.8% in terms
of AP, indicating that small objects are more susceptible to the misalignment issue. This
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Model #epochs Backbone AP AP50 AP75 APS APM APL
SMCA-DETR [6] 50 R50 43.7 63.6 47.2 24.2 47.0 60.4
SAM-DETR [44] 50 R50 45.0 65.4 47.9 26.2 49.0 63.3
Def.DETR [54] 50 R50 45.4 64.7 49.0 26.8 48.3 61.7
AdaMixer[8] 36 R50 47.0 66.0 51.1 30.1 50.2 61.8
SD-DETR [47] 50 R50 45.5 65.4 48.5 25.6 49.9 64.2
DAB-Def.DETR [25] 50 R50 46.9 66.0 50.8 30.1 50.4 62.5
DN-Def.DETR [17] 12 R50 43.4 61.9 47.2 24.8 46.8 59.4
DN-Def.DETR [17] 50 R50 48.6 67.4 52.7 31.0 52.0 63.7
DINO [45] 12 R50 49.0 66.6 53.5 32.0 52.3 63
DINO [45] 24 R50 50.4 68.3 54.8 33.3 53.7 64.8
Co-DETR [55] 12 R50 49.5 67.6 54.3 32.4 52.7 63.7
Cascade-DETR [43] 12 R50 49.7 67.1 54.1 32.4 53.5 65.1
Group-DETR [2] 12 R50 49.8 −− −− 32.4 53.0 64.2
H-DETR [14] 12 R50 48.7 66.4 52.9 31.2 51.5 63.5
DAC-DETR [13] 12 R50 50.0 67.6 54.7 32.9 53.1 64.2
DAC-DETR [13] 24 R50 51.2 68.9 56.0 34.0 54.6 65.4
Salience-DETR [12] 12 R50 50.0 67.7 54.2 33.3 54.4 64.4
Salience-DETR [12] 24 R50 51.2 68.9 55.7 33.9 55.5 65.6
Rank-DETR [31] 12 R50 50.2 67.7. 55.0 34.1 53.6 64.0
MS-DETR [50] 12 R50 50.0 67.3 54.4 31.6 53.2 64.0
MS-DETR [50] 24 R50 50.9 68.4 56.1 34.7 54.3 65.1
Focus-DETR [52] 36 R50 50.4 68.5 55.0 34.0 53.5 64.4
Stable-DINO [26] 12 R50 50.4 67.4 55.0 32.9 54.0 65.5
Stable-DINO [26] 24 R50 51.5 68.5 56.3 35.2 54.7 66.5
Align-DETR (Ours) 12 R50 50.5 67.7 55.3 34.7 53.6 64.6
Align-DETR (Ours) 24 R50 51.7 69.0 56.3 35.5 55.0 66.1

Table 1: Comparisons (%) of Align-DETR and other DETR-like methods on COCO val
set. Def.DETR is the abbreviation of Deformable DETR. Bold and underlined text are best
results under 1× and 2× schedule setting, respectively.

highlights the effectiveness of Align-DETR in addressing the challenges posed by misalign-
ment, particularly in scenarios where precise localization is crucial, such as detecting small
objects. Align-DETR also outperforms other competitors such as SMCA [6], Faster RCNN-
FPN [33], Deformable-DETR [54] and Focus-DETR [52] with much less training schedule.
At last, we compare our methods to two DETR-variants that also focus on improving the
assignment of DETR, i.e. H-DETR [14] and Group-DETR [2], and find Align-DETR leads
them by a large margin of 1.8% AP and 0.7% AP, respectively, with fewer queries used in
training. These results suggest that Align-DETR is a highly effective and efficient method
for object detection tasks.

4.2.1 Comparison with Related Methods

In addition to comparison with state-of-the-art DETR-variants, we also implement methods
like Quality Focal Loss (QFL) [21], and Varifocal Loss (VFL) [46], Position-Supervised
Loss (PSL) [26] on DINO [45], and the results are presented in Tab. 3. Interestingly, we
find that the the IoU-branch [15], which is a widely adopted component in CNN-based de-
tectors [10], brings limited improvement to the performance. QFL [21] and VFL [46] also
perform poorly in our experiments, which suggests that they are not designed for end-to-end
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Method w/ Align Loss AP AP50 AP75
H-DETR [14] 48.7 66.4 52.9
Align-H-DETR ✓ 49.3 67.2 53.7

Table 2: Comparisons (%) of Align-H-DETR and H-DETR on COCO val set with 1x sched-
ule.

Method AP AP50 AP75

Focal Loss [24] 49.0 66.0 53.5

IoU branch [15] 49.2 66.3 53.5
QFL [21] 47.6 64.3 51.8
VFL [46] 48.7 67.0 52.3
PSL [26] 49.8 66.7 54.5
PSL + PMC [26] 50.2 66.7 55.0
Align Loss (Ours) 50.5 67.8 55.3

Table 3: Comparison (%) with other methods on the misalignment problem on COCO val.
We use ”PSL” and ”PMC” for position-supervised loss and position-modulated matching in
Stable-DINO [26]

detectors. Compared to the most closely related method, PSL [26], Align Loss demonstrated
a significant improvement of 0.7% AP. Even when augmented with PMC, PSL still falls short
of matching the performance of Align Loss. We attribute this discrepancy to PSL’s focus on
optimizing paths individually for each layer, without addressing the issue of misalignment
across layers. This is likely a contributing factor to the superior performance of our method.

4.3 Ablation Study

We conduct a series of ablation studies with DINO baseline to validate the effectiveness of
the components. All experiments here use an R50 backbone and a schedule of standard 1x
training schedule.

Firstly, we validate the effectiveness of the proposed loss design and the results are sum-
marized in Tab. 4. It is observed that both classification loss and regression loss contribute to
the final performance, with the primary contribution stemming from the classification loss,

Cls Loss Reg Loss Matching AP AP50 AP75

✓ ✓ ✓ 50.5 67.8 55.3
✓ ✓ 50.1 67.2 54.8
✓ ✓ 49.7 66.9 54.1

✓ ✓ 49.1 67.5 53.4
✓ 49.0 66.0 53.5

Table 4: Ablation study (%) of Align-DETR on each component in terms of AP on COCO
val. The results demonstrate the effectiveness of our proposed component.
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α 0 0.25 0.5 0.75

AP 50.0 50.5 49.2 47.6

k 1 2 3 4 5

AP 50.1 50.2 50.4 50.5 50.2

τ 1.5 3 6 9

AP 50.5 50.1 50.0 49.7

Table 5: Influence (%) of hyper-paramters α , k and τ on our approach on COCO val.

as anticipated. Notably, when the regression loss is deprecated, the performance experiences
a 0.8% AP drop, underscoring the importance of consistency in Eq.7 in the loss design.
To further investigate the impact of the hyper-parameters we introduced, i.e. α , k and τ , we
conduct sensitivity analysis by changing one variable and keeping other variables controlled.
Our default values are k = 4, α = 0.25, and τ = 1.5. As shown in Tab. 5, α is has the greatest
influence on the performance while τ and k have moderate effects. This sensitivity analysis
supports our hypothesis that α should be kept small to prevent effective training signals from
suppression.

5 Conclusion
This paper investigates the optimization of DETR and identifies two aspects of the mis-
alignment issue that could impede performance. To address these challenges, we propose a
unified and straightforward solution named Align-DETR, comprising a many-to-one match-
ing strategy and a novel loss function, referred to as Align Loss. To mitigate the side effects
of misaligned targets across layers, our matching strategy expands the number of samples as-
signed to a ground truth, which we term as candidates. We anticipate the matching changes
to occur within a group of candidates. The Align Loss is designed as a "soft" variant of
focal loss, employing a quality metric to guide the learning of classification with respect to
position. Additionally, we implement a gradual transition from positive to negative samples
within a group of candidates to smooth the conflict caused by matching change. Competi-
tive experimental results are achieved on the common COCO benchmark, demonstrating the
superiority of Align-DETR in terms of effectiveness.
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