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Abstract

This paper introduces S³-Match, a common-view aligned image matching algorithm
via self-supervised keypoint selection. The most common image matching methods de-
pend on sparse interest points to minimize dependence on non-essential information and
to effectively manage significant distortions, occlusions, or noise. Nonetheless, the re-
peatability of interest points and their reliable description often degrade in scenes with
sparse textures or when there are changes in appearance due to varying viewpoints and
lighting conditions.

To overcome these challenges, S³-Match employs a quality score that autonomously
identifies feature points with high distinctiveness and stability during the training phase.
Furthermore, it incorporates a cross-attention mechanism that aligns features within the
common-view areas across images. This alignment provides consistent feature infor-
mation across images, and focuses subsequent self-supervised keypoint extraction and
feature description on these common-view regions. Experimental results demonstrate
that S³-Match significantly outperforms SuperPoint in terms of keypoint selection con-
sistency and uniformity. It also exhibits superior performance in pose estimation tasks
and surpasses other advanced algorithms in computational efficiency. Additionally, we
have validated a variant of S³-Match that does not rely on cross-image information, ca-
pable of meeting a broader range of application needs.

1 Introduction
Accurate and efficient image matching serves as a fundamental component in a wide range
of computer vision applications[25, 26], including 3D scene reconstruction[17, 18], camera
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calibrations, and simultaneous localization and mapping(SLAM)[15], etc. In the domain of
image matching, methods are typically classified into two categories: detector-based and
detector-free. Compared to detector-free approaches, detector-based methods provide sev-
eral significant advantages, such as computational efficiency with sparse features and scal-
able adaptability across various applications. An effective detector-based method should
accurately identify salient points and provide descriptors that are invariant to changes in
scale, viewpoint, illumination, and other environmental variables. Traditional methods[9,
10, 13, 29] seek to achieve robustness through analyzing local gradient orientations and mag-
nitudes. However, these techniques often lack adaptability to new or complex environments.
In response, the advancement of deep learning technologies has catalyzed the emergence
of numerous data-driven approaches in recent years, such as MagicPoint[4], SuperPoint[5],
LIFT[27], etc. Those learning-based methods show powerful generalization and strong per-
formance on keypoint detection and local feature description[12, 19].

Despite the advancements in learning-based methods for keypoint detection and descrip-
tion, several challenges remain [11]. Some methods are restricted to train individual parts of
the feature extraction pipeline [16], while others allow for end-to-end training but still require
the use of outputs from traditional hand-crafted detectors to initiate the training [5, 27, 28].
For instance, SuperPoint [5] learns to detect corners by generating a large set of synthetic
shapes with annotated corners as ground truth. However, this training pipeline is complex
due to the necessity of labeled keypoints, and its multi-phase training process is challenging
to tune. Additionally, fixed rules for feature point selection may fail under certain textures
(e.g., corner detectors are unable to utilize linear textures), thus failing to effectively utilize
all the textural information available in the images.

To address this issue, our approach initially attempts to generate interest points dis-
tributed across the entire image. Subsequently, we design an evaluation criterion to assess
the quality of these interest points. Finally, we guide the network to preferentially select
positions of higher-quality interest points based on this quality assessment.

Figure 1 presents the results of feature point selection using the S³-Match algorithm. The
figure displays the effectiveness of feature point selection in images IA and IB. Utilizing cam-
era pose and depth information available in the dataset, keypoints from IB are projected onto
IA in red. When the same geometric locations in both images are recognized as keypoints,
the overlay of red and green visually appears yellow. In a contrast, the right side of the fig-
ure showcases the repeatability of keypoints using the SuperPoint algorithm. Compared to
SuperPoint, S³-Match achieves a higher detection rate of feature points, better uniformity in
distribution, and significantly superior repeatability.

Additionally, many methods [5, 6, 22, 30] detect keypoints on downsampled feature
maps to save computational resources, often at the expense of image detail. To overcome
these limitations, we introduce a pyramid-like feature storage approach that detects key-
points at full resolutions while generating descriptors through the integration of multi-level
and cross-image features, thereby enhancing both detail preservation and computational ef-
ficiency.

The contributions of S³-Match are summarized as follows:

• S³-Match introduces a self-supervised learning approach, eliminating the need for
manually designed rules for feature point selection. This enables the algorithm to autonomously
identify and select feature points that are highly distinctive and stable.

• It incorporates a global attention mechanism that aligns the features of correspond-
ing parts in the common-view regions of two images, thereby facilitating the generation of
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IA - our

IB - our

IB - our - fuse IB - sp - fuse

Figure 1: Feature point detection results. The figure displays the keypoint detection results
by S³-Match in images A(IA-our) and B(IB-our), an integrated result achieved by projecting
the keypoints from A onto B in red(IB-our-fuse), and the comparative integration results from
SuperPoint [5](IB-sp-fuse).

descriptors and the selection of keypoints that focus on matchable areas.
• It features an efficient feature pyramid storage structure designed to achieve multi-

scale, high-resolution dense descriptors, while also optimizing for computational efficiency.

2 Related Work

In the domain of learning-based image matching, there are detector-free models that directly
produce semi-dense matches, and detector-based models, which generate keypoints along
with their descriptions. This article primarily focuses on detector-based methods.

Keypoint detection and local feature matching have proven effective across a range of vi-
sion tasks. Traditional approaches typically detect keypoints before describing them [1, 24].
However, these ’detect-then-describe’ methods often suffer from reduced performance in
keypoint detection and matching under conditions of significant changes in illumination,
seasonal variations, and differing viewpoints. This decline is largely attributable to the key-
point detection process’s inherent emphasis on image details, which makes it sensitive to
low-level information. Furthermore, training the detector and descriptor separately can re-
sult in information loss and inconsistencies between the keypoint detector and descriptor.

To overcome these challenges, the Joint Detection and Description approach has been
proposed. This method unifies the tasks of keypoint detection and description, learning
them concurrently within a single model. Such integration allows the model to leverage
information from both tasks during optimization, thus enhancing its adaptability to specific
vision tasks. A prominent example is SuperPoint [5], which adopts a self-supervised strategy
to simultaneously determine keypoint locations at the pixel level and their descriptors.

In contrast to methods that rely on predefined corners to guide keypoint detection, ap-
proaches such as D2-Net [6], DISK [21], and ALIKED [30] enable models to autonomously
discover keypoints in an end-to-end manner. Empirical evidence suggests that these methods
offer superior matching performance, particularly under challenging conditions like strong
variations in illumination and on weakly textured surfaces.
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3 Methods

3.1 Algorithm Framework

Skip Connection

Cross Attention
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Figure 2: System Overview of S³-Match.

Figure 2 illustrates the framework of the S³-Match algorithm, designed for dual-image
matching in three-dimensional scenes, namely IA and IB. In this approach, a U-Net net-
work encoder with shared parameters is first used to extract features from both images inde-
pendently. Subsequently, a cross-attention mechanism is employed on the lower-resolution
feature maps to align features within the common-view areas, promoting consistency in the
corresponding regions within common-view areas.

Then, we further incorporate the decoder portion of the U-Net network, and we integrate
the last feature maps at various levels of the decoder to construct a feature pyramid.

In the S³-Match, the extraction of keypoints occurs at the lowest level of the feature
pyramid, which corresponds to the terminal layers of the U-Net network. The generation of
descriptors is based on sampling at the corresponding locations on the entire feature pyramid
using bilinear interpolation at the keypoint coordinates and concatenating these sampled
results into a multi-scale descriptor. This strategy avoids generating dense descriptors with
many channels on high-resolution feature maps, thereby reducing information redundancy
and wastage of computational resources.

3.2 Common-View Aligned Bottleneck Features

(a) (b) (c) (d)

Figure 3: Global Consistency in Feature Back-
grounds: (a, b) Illustrate the matching relationships
between the original image and its specific regions.
(c, d) Show the feature background images, where the
channel values of the feature map are mapped to RGB
channels and averaged.

Point coordinates
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Figure 4: Multi-Scale Descriptor
Sampling Module

S³-Match performs a flattening operation on the deepest bottleneck feature maps of the
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U-Net, represented as FA and FB, to execute the cross-attention mechanism. We utilized
the linear transformer architecture from LoFTR, which is detailed in the appendix. Notably,
we omit the self-attention mechanism, replacing it instead with a convolution operation to
facilitate intra-image information exchange after each cross-attention iteration.

S³-Match employs a bidirectional cross-attention mechanism applied four times to pro-
vide a common-view aligned consistent feature maps for descriptor generation and keypoint
selection across two images, as illustrated in Figure 3. The figure clearly demonstrates that
the spatial features corresponding to the two images are highly similar, and these features
are focused on the matchable areas within the common-view regions. This focus facilitates
the exclusion of interest point selection in non-common-view areas. We utilize ground truth
of region correspondences to guide the generation of this features, with specific details on
the supervision function available in the appendix.

3.3 Multi-Scale Fusion Descriptors
To efficiently extract and integrate feature information, we construct a feature pyramid that
captures the final feature map from each scale of the U-Net decoder. We also introduce a
descriptor sampling module that extracts descriptors through bilinear interpolation at feature
point coordinates across these multi-scale feature maps, concatenating them along the fea-
ture dimension to form a multi-scale descriptor. These descriptors are then processed by a
Multilayer Perceptron (MLP) for further feature integration. The entire process of obtaining
descriptors from point coordinates is represented as D = S(P), as shown in Figure 4.

Assuming the fused descriptors for the feature points are DA = S(PA) and DB = S(PB),
we computes the confidence matrix for matching relationships between feature points, de-
noted as Q, as follows:

C(i, j) =
1
τ
· ⟨DA(i),DB( j)⟩, (1)

Q(i, j) = softmax1 (C(i, ·)) j · softmax1 (C(·, j))i . (2)

In this calculation, C(i, j) quantifies the feature similarity between the ith point in IA and
the jth point in IB, adjusted by a temperature parameter τ to modulate the sensitivity of the
similarity metric. We introduce an improved softmax function that does not require the sum
of matching probabilities to equal one, specifically designed for points without correspon-
dences:

softmax1(x)i =
exi

∑
N
j=1 ex j +1

. (3)

Based on the confidence matrix Q, we identifies matching pairs whose confidence ex-
ceeds the threshold θq and that also satisfy the nearest-neighbor matching criteria. As a
result, we obtain N sets of matching pairs: {pi

A, pi
B}, where i = 1,2, ...,N. For detailed

information on descriptor supervision, please refer to the appendix.

3.4 Adaptive Feature Point Selection
S³-Match generates probability maps MA and MB consistent with the original image resolu-
tion directly within the final layer of the U-Net network, utilizing a 1×1 convolution and a
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Sigmoid activation function. Non-maximum suppression is employed to select a fixed num-
ber of keypoints from the probability maps, yielding two sets of keypoints PA and PB. Sub-
sequently, based on the aforementioned matching rules, we identify N sets of corresponding
matching pairs: {pi

A, pi
B}, where i = 1,2, ...,N.

To tackle the challenges of repeatability in feature point detection across varying view-
points and the sparsity of feature points, the S³-Match algorithm introduces an adaptive in-
terest point exploration mechanism. This mechanism dynamically adjusts the strategy for
feature point extraction.

When evaluating the reliability of matching pairs pi
A, pi

B generated by current deep learn-
ing networks, two main criteria are considered: minimal error between selected keypoints to
ensure their stability across images, and a high confidence level in the matches to affirm the
distinctiveness and uniqueness of the feature points. Low confidence can result in unstable
results and mismatches, adversely affecting match quality.

We have designed criteria for assessing the advantages and disadvantages of feature point
selection. The matching quality score, denoted as R, is defined as follows:

Ri = exp(−β · εpi
A,p

i
B
) ·Qpi

A,p
i
B
, i = 1,2, . . . ,N, (4)

where ε denotes the matching error between two candidate-matched points. When the
dataset provides accurate camera poses and depth maps, we can compute the exact corre-
sponding position of pi

A in image B as p̂i
A, with ε being the Euclidean distance ∥pi

A − p̂i
A∥.

If the depth maps in the dataset lack sufficient accuracy, ε can be estimated by computing
the epipolar error based on camera poses. β is a constant coefficient used to scale the er-
ror to a suitable magnitude, while Qpi

A,p
i
B

represents the confidence probability between the
matching pairs, as defined in Equation 2, reflecting the distinguishability of the two feature
points.

During the training process of deep learning networks, improvements in network perfor-
mance typically lead to gradual increases in R. To ensure that the distribution of R remains
stable despite network improvements, we normalize R. Initially, we calculate the mean and
standard deviation of all the matching quality scores Ri:

µ =
1
N

N

∑
i=1

Ri, σ =

√
1
N

N

∑
i=1

(Ri −µ)2. (5)

Then, each Ri is normalized to control its distribution range:

Ri = max(min(0.5+
Ri −µ

2σ
,1),0), i = 1,2, . . . ,N. (6)

To adaptively adjust the rules for interest point selection, we utilize a self-supervised loss
function Ldet , which is composed of the following components:

Ldet =
5
N

N

∑
i=1

{(Mpi
A

A −Ri)
2 +(Mpi

B
B −Ri)

2}+

1
L

L

∑
j=1

{(M¬p j
A

A )2 +(M
¬p j

B
B )2}+ 1

HW

HW

∑
k=1

(Mk
A +Mk

B).

(7)

In the first component, M
pi

A
A and Mpi

B
B denote the keypoint probability values at the lo-

cations of candidate matching points pi
A and pi

B within the probability maps MA and MB,
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respectively. The second component, ¬p j
A and ¬p j

B, pertains to points identified as keypoints
by the network that fail to form matching relationships across images. The final component
is designed to ensure that the probability values of the non-keypoint regions in the probability
maps are minimized.

3.5 Fine-tuning of Matching Relationships

We propose a descriptor-based fine-tuning mechanism to enhance the precision of the match-
ing process. Initially, descriptors are extracted from the multi-scale feature pyramid:

di
A = S(pi

A), di
B = S(pi

B). (8)

These descriptors provide detailed information on the differences between feature points,
allowing for precise adjustments to their positions:

∆pi
A = MLP[di

A,d
i
B]. (9)

The network predicts the position offset ∆pi
A, resulting in the adjusted matching pair

{pi
A +∆pi

A, pi
B}. The Mean Absolute Error (MAE) loss function is used to supervise this

fine-tuning process:

Lbias =
1
N

N

∑
i=1

∥pi
A +∆pi

A − p̂i
B∥, (10)

where p̂i
B represents the true corresponding point of pi

B in IA.

4 Experiments

4.1 Implementation Details

The S³-Match model was trained on the MegaDepth [7] and ScanNet [3] datasets. For the
MegaDepth dataset, the model used the Adam optimizer with an initial learning rate of 4×
10−3 and a batch size of 4. It was trained on four RTX 4090 GPUs for two days until
convergence, processing images at a resolution of 1280×1280. Additionally, a strategy of
halving the learning rate every four epochs was employed to optimize training efficiency.
For the ScanNet dataset, the training configuration was similar, but the initial learning rate
was set to 1×10−3, and the images were processed at a resolution of 640×480.

Due to limited training resources, the paper did not perform detailed adjustments to the
weights of each loss component. The final network loss function integrated contributions
from various parts as follows:

L= Lalign +Ldesc +Ldet +Lbias. (11)

The overall loss function combines supervision for common-view alignment, descriptor
match, self-supervised keypoint selection, and matching refinement. These elements work
together to significantly improve the network’s ability to accurately detect and match key-
points.
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4.2 Outdoor Pose Estimation

Pose estimation involves determining the orientation and position of an object or camera
in three-dimensional space. In outdoor environments, pose estimation generally requires
establishing matching relationships between two or more images. These matches are then
used to compute the fundamental matrix using the Random Sample Consensus (RANSAC)
algorithm, which helps mitigate the impact of erroneous matches and reconstructs changes
in camera perspective.

We evaluate the effectiveness of S³-Match for outdoor pose estimation using the MegaDepth
dataset [7], which comprises data reconstructed from 196 different locations via COLMAP
SfM/MVS. We adopted the evaluation protocol proposed by DISK [21], assessing model per-
formance by calculating the Area Under Curve (AUC) across different pose error thresholds
(5°, 10°, 20°). As depicted in Table 1, S³-Match exhibits superior performance in handling
challenging outdoor scenes compared to competing techniques.

Table 1: Performance Comparison of Pose Estimation on MegaDepth[7] and ScanNet[3]
Datasets

Method MegaDepth (AUC)(%) ScanNet (AUC)(%)

@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

D2-Net [6] + NN - - - 5.3 15.0 28.0
SP [5] + NN 31.7 46.8 60.1 9.4 21.5 36.4
SP + SuperGlue [14] 42.2 61.2 76.0 16.2 33.8 51.8
DRC-Net [8] 27.0 42.9 58.3 7.7 17.9 30.5
PDC-Net+ [20] 51.5 67.2 78.5 20.3 39.4 57.1
MatchFormer [23] 53.3 69.7 82.0 24.3 43.9 61.4
ASpanFormer [2] 55.3 71.5 83.1 25.6 46.0 63.3
LoFTR [19] 52.8 69.2 81.2 22.1 40.8 57.6

S³-Match 56.5 72.7 84.1 22.4 41.2 57.4

To underscore the computational efficiency of S³-Match under identical hardware condi-
tions, we conduct a time evaluation of image processing using various advanced methods,
all under uniform environmental and hardware setups. As shown in Figure 5, S³-Match
processes an image with a resolution of 1280 pixels in merely 69 milliseconds. This total
processing time includes 16 milliseconds for the encoding phase of U-Net, 24 milliseconds
for the decoding phase, 17 milliseconds for the attention mechanism, and 12 milliseconds
for additional components.

4.3 Indoor Pose Estimation

ScanNet is a widely used dataset for indoor scene understanding and 3D reconstruction,
featuring a diverse array of indoor environments. It includes image pairs with wide baselines
and large textureless areas, presenting significant challenges for image analysis.

To ensure fairness in the evaluation process, this study adhered to the training and test-
ing protocols of LoFTR [19]. Despite the well-documented challenges that detector-based
methods encounter in textureless scenes, the test results unequivocally show that S³-Match
outperforms all detector-based methods in terms of pose accuracy. The performance is doc-
umented in Table 1.
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Figure 5: Performance and Efficiency Comparison between S³-Match and Other Open-
Source Methods

4.4 Qualitative Analysis of Keypoint Selection

Figure 6 illustrates the local feature point selection results for S³-Match and SuperPoint
within the dataset, as well as the integrated outcomes. Compared to SuperPoint, S³-Match
more effectively exploits the subtle textural information in images, yielding keypoints that
are uniformly distributed, with high detection rates, excellent repeatability, and enhanced
stability.

4.5 Ablation Study

To rigorously evaluate the effectiveness of the innovative modules within the S³-Match
framework, we evaluated various network variants. Initially, the fine-tuning mechanism for
matching relationships was removed. Subsequently, the cross-image consistent background
informed by cross-attention was eliminated, along with the associated second constraint of
Ldet . This left the generation of keypoints and descriptors dependent solely on individual im-
age information, resembling a more traditional approach to feature detection and descriptor
extraction.

We contrast these features with the SuperPoint algorithm, which relies on synthetically
generated datasets, to demonstrate the superiority of S³-Match’s self-supervised keypoint
selection. The results of the ablation study are detailed in Table 2.

Table 2: Ablation Study Results on Pose Estimation in MegaDepth

Method
AUC% Runtimes per image

@5◦ @10◦ @20◦ at 1280×1280 resolution

Full S³-Match 56.5 72.7 84.1 69ms
No Fine-tuning 54.1 70.9 82.8 66ms
No Fine-tuning & Attention 42.8 60.1 75.0 43ms
SuperPoint+NN 31.7 46.8 60.1 38ms
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IB - spIA - spIB - sp - fuseIB - ourIA - our IB - our - fuse

Figure 6: Qualitative Analysis Results on Keypoint Selection in MegaDepth. Keypoints
in IA are projected onto IB in red. When the keypoints from the two images are consistent,
the overlay of red and green appears as yellow.

5 Conclusion

We introduces a common-view aligned image matching algorithm with self-supervised key-
point selection, named S³-Match. S³-Match utilizes self-supervised learning to autonomously
identify and select feature points that are highly distinctive and stable. Moreover, the al-
gorithm aligns features within common-view areas, ensures consistent feature information
across images, and directs subsequent self-supervised keypoint extraction and feature de-
scription efforts towards these common-view regions.

The approach described in this paper significantly outperforms the SuperPoint algorithm
in terms of consistency, repeatability, and density of keypoint selection. Compared to other
advanced algorithms, our method achieves nearly the lowest computational overhead and
exhibits the best performance in pose estimation tasks.
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