

Computer Vision Center

Towards Generative Class Prompt Learning for Fine-grained Visual Recognition

The 35th British Machine Vision Conference 25th - 28th November 2024, Glasgow, UK

Limitations of CLIP-based representations

- Fine-grained category names are often highly dataset-specific that lack in semantic visual cues
- CLIP's knowledge is about natural visual content, cannot be adopted directly to unseen domains
- Visual concepts that are hard to describe by language (e.g. fractal patterns, abstract imagery) yield spurious representations from CLIP during prompting

Core underlying issue: Suboptimality of raw CLIP representations, which often lack fine-grained visual semantic awareness. We use Generative Models to capture fine-grained visual information!

Contributions

- We propose a generative class prompt learning (GCPL) baseline, leveraging pre-trained diffusion models to tackle CLIP's limitations.
- GCPL explicitly conditions CLIP class embeddings with fine-grained visual semantic knowledge via generation-aided learning.
- We further extend it, advocating for learning stronger vision-induced textual representations with inter-class discriminative knowledge.

To our best knowledge - one of the first attempts to introduce generation guided prompting for few-shot VLM adaptation!

GCPL: Generative Class Prompt Learning

- Inject learnable [CLASS] token via handcrafted prompt into CLIP (only this token is trainable!)
- Use it to condition a T2I LDM, optimizing L2 loss w.r.t. the few-shot support set.

 $\mathcal{L}_{GCPL} = \mathbb{E}_{x \sim \mathcal{E}(x), p_c, \varepsilon \sim \mathcal{N}(O, 1), t} \left| \| \boldsymbol{\varepsilon}_c - \boldsymbol{\varepsilon}_c^{\boldsymbol{\theta}}(x_t, t, c_{\boldsymbol{\theta}}(p_c)) \|_2^2 \right|$

CoMPLe: Contrastive Multi-Class Prompt Learning

Extends GCPL to multi-class setting – all class prompts are jointly optimized by additionally enforcing divergence of the noise predictions across other classes.

Few-shot Diffusion Classifier Inference pipeline after training

ELBO approximation for LDMs:

$$ELBO = -\mathbb{E}_{\varepsilon} \left[\sum_{t=2}^{T} w_t \| \varepsilon - \varepsilon_{\theta}(x_t, c) \|_2^2 - \log p_{\theta}(x_0 \mid x_1, c) \right] + C$$

$$= -\mathbb{E}_{\varepsilon, t} \left[\| \varepsilon - \varepsilon_{\theta}(x_t, c) \|_2^2 \right] + C$$

Bayes' theorem gives us:

$$p_{\theta}(c_i \mid x) = \frac{p(c_i)p_{\theta}(x|c_i)}{\sum_j p(c_j)p_{\theta}(x|c_j)}$$

Simplifying using ELBO:

noises
$$p_{\theta}(c_i \mid x) = \frac{\exp\{-\mathbb{E}_{\varepsilon,t} \left[\|\varepsilon - \varepsilon_{\theta}(x_t, c_i)\|_2^2 \right] \}}{\sum_j \exp\{-\mathbb{E}_{\varepsilon,t} \left[\|\varepsilon - \varepsilon_{\theta}(x_t, c_j)\|_2^2 \right] \}}$$

• Conditioning signal *c* is derived from few-shot learned [CLASS] prompts **⇒** few-shot diffusion classifier!

$$c_i = c_{\theta}(p_{c_i})$$

 $p_{\theta}(c_i \mid x) = \frac{1}{\sum_{i} exp\{\mathbb{E}_{\varepsilon,t} \left[\|\varepsilon - \varepsilon_{\theta}(x_t, c_{\theta}(p_{c_i}))\|_2^2 - \|\varepsilon - \varepsilon_{\theta}(x_t, c_{\theta}(p_{c_j}))\|_2^2 \right] \}}$

 $\mathcal{L}_{CoMPLe} = \frac{1}{B} \sum_{i=1}^{B} \mathbb{E}_{x \sim \mathcal{E}(x), p_{c_j}, \varepsilon \sim \mathcal{N}(O, 1), t} \left[\| \varepsilon_{c_i} - \varepsilon_{c_j}^{\theta}(x_t^j, t, c_{\theta}(p_{c_j})) \|_2^2 \right] - \lambda \cdot \frac{1}{B(B-1)} \sum_{i=1}^{B} \mathbb{E}_{x \sim \mathcal{E}(x), p_{c_j}, \varepsilon \sim \mathcal{N}(O, 1), t} \left[\| \varepsilon_{c_i} - \varepsilon_{c_j}^{\theta}(x_t^j, t, c_{\theta}(p_{c_j})) \|_2^2 \right]$ (please refer to paper for details.)

Quantitative Results: Few-shot Classification

Medical imaging datasets

- Zero-shot methods completely fail on the unseen domain.
- GCPL and CoMPLe significantly boosts performance over prior SoTA.

•	Prompt learning
	is very noisy for
	unseen domain
	(i.e. medical
	datasets) – as
	seen from high
	variances.

•	GCPL and CoMPLe are lot	
	consistent and	
	robust across	
	unseen domains.	

Method	CRC5k [24]	ISIC2018 [55]	LC25000 [1]
Zero-Shot			
CLIP [21.49	14.43	25.40
Diffusion Classifier [53]	24.16	10.41	17.29
Adapter			
Tip-Adapter [59.90 ± 2.18	33.88 ± 7.26	80.48 ± 1.93
Tip-Adapter-F [71.44 ± 2.46	40.32 ± 5.19	86.02 ± 1.59
Prompt learning			
CoCoOp [60.91 ± 2.98	24.67 ± 6.54	73.86 ± 4.19
KgCoOp [☑]	59.90 ± 5.17	29.16 ± 6.82	75.87 ± 3.88
MaPLe [40.56 ± 16.12	30.33 ± 13.67	71.96 ± 5.22
PromptSRC [22]	56.45 ± 18.28	44.18 ± 7.02	77.54 ± 1.51
Ours			
Ours-GCPL	74.76 ± 1.94	48.84 ± 2.13	93.44 ± 0.78
Ours-CoMPLe	76.36 \pm 1.82	49.27 ± 2.59	94.83 \pm 0.28

Experimental Setup

Competitors: existing VLM adaptation paradigms

Datasets: (a) fine-grained natural images; (b) medical images; (c) abstract patterns

Dataset	Visual concept	Prompt template	Initializer word
StanfordCars [11] Cornseeds [12]	Vehicular variants Natural images, agriculture	"A photo of [CLASS], a type of car." "A photo of [CLASS] corn seed."	car seed
CRC5k [26] ISIC2018 [59] LC25000 [6]	Histopathology Dermatology Histopathology	"[CLASS] tissue." "[CLASS] skin lesion." "[CLASS] tissue."	tissue skin tissue
Fractals [25]	Abstract imagery	"[CLASS] fractal."	fractal

Fine-grained natural image datasets

Mostly observe high gains over prior few/zero-shot methods.

Method	StanfordCars []	Cornseeds [☐]	Flowers 102 []	Fractals [
Zero-Shot				
CLIP [65.56	18.47	70.73	9.25
Diffusion Classifier [76.77	17.77	54.21	6.25
Adapter				
Tip-Adapter []	65.82 ± 0.51	34.27 ± 3.97	89.28 ± 0.55	81.49 ± 1.22
Tip-Adapter-F [75.14 ± 0.35	39.61 ± 2.88	94.25 ± 0.43	86.16 ± 0.54
Prompt learning				
CoCoOp [71.57 ± 0.76	36.56 ± 5.42	87.84 ± 0.48	67.89 ± 1.29
KgCoOp [78.76 ± 0.61	38.45 ± 4.84	91.97 ± 0.44	72.84 ± 0.93
MaPLe [74.39 ± 0.43	34.37 ± 15.44	93.96 ± 0.61	76.91 ± 6.55
PromptSRC [22]	83.33 ± 0.35	33.69 ± 4.55	97.06 ± 0.27	93.45 ± 0.52
Ours				
Ours-GCPL	88.47 ± 0.27	43.42 ± 2.84	93.45 ± 1.39	90.76 ± 2.23
Ours-CoMPLe	87.69 ± 1.47	45.79 ± 2.12	90.73 ± 1.05	88.83 ± 1.57

Ablation Study: Varying number of shots per class

Acknowledgements: This work acknowledges the Spanish projects GRAIL PID2021-1268080B-I00, DocAI 2021- SGR-01559, the CERCA Program / Generalitat de Catalunya, and PhD Scholarship from AGAUR 2023 FI-3- 00223. The authors also acknowledge Gedas Bertasius and Feng Cheng of UNC Chapel Hill for constructive discussions and hardware resources.