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Appendix

A Group Attention Block

The Group Attention Block (GAB) is a residual learning process employing the group
guidance operation, suggested by Fan et al. [7]. It focuses on more important information
about objects through attention with guidance from the prior segmentation map and gradually
improves the map through a sequence of four group attention (GA) operations. Each GAs

operation, as shown in Fig. I, consists of 3 steps: 1) splitting the input feature g′(n)i into
multiple (s ∈ {1,8,16,32}) groups along the channel, 2) concatenating the guidance map
p(n)

i among the split features g′(n)i, j , where j = 1, ...,s, and three finally producing an improved
guidance map and feature map with convolution operations and residual connection.
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Figure I: Group Attention Block (GAB).

Formally, the nth GA operation of the GAB at level i is given by

1) g′(n)i →
{

g′(n)i,1 ,g
′(n)
i,2 , ...,g

′(n)
i,s

}
(5)

2) g′p(n)
i = Cat

[
g′(n)i,1 ,p

(n)
i , ...,g′(n)i,s ,p

(n)
i

]
(6)

3) g′(n+1)
i = g′(n)i ⊕ReLU◦Conv3(g′p(n)

i ), (7)

p(n+1)
i = p(n)

i ⊕Conv3(g′(n+1)
i ) (8)

where i = 1, ...,L, n ∈ {0,1,2,3}, g′(0)i = g′i, g′(4)i = hi, p(0)
i = Ŷ(B)

i+1, and p(4)
i = Ŷ(B)

i . Cat
indicates concatenation along the channel dimension. The convolution operations reduce the
channel number from C+ s to C for the feature maps and from C+ s to 1 for guidance maps,
which in turn becomes the guidance for the next GA operation. For the first GAB stage, a
coarse map from the Enrich Decoder (Ŷ(E)) is used as the guidance segmentation map. Each
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GAB iteratively refines the output segmentation map, which is used as guidance for the first
GA operation at the next GAB stage.

B Parameter Size Comparison

Comparing the parameter size of architectures is essential to justify that the performance
increase is not merely due to larger model capacity. To ascertain that the performance of
ENTO is not merely due to an increase in parameter size, we conduct a comparative analysis
with parameter sizes of other models, presented in Tab. I. As ENTO is versatile and can adapt
to different backbone encoders, we choose to only compare the decoder parameter sizes, by
leaving out the backbone encoder size for all models. The results reveal that our decoder
parameter, at 4.17M, is smaller than all other models except SINet-V2. This indicates that
the enhancement in performance of our method is not a consequence of increased parameters
but rather the result of an efficient architectural design.

Model Decoder Params Sα ↑ Fw
β
↑ Eφ ↑ M ↓

SINet 23.35M 0.808 0.723 0.871 0.058
MGL-R 42.04M 0.833 0.740 0.867 0.052
PFNet 20.90M 0.829 0.745 0.888 0.053
SINet-V2 1.69M 0.847 0.770 0.903 0.048
SegMaR 42.44M 0.841 0.781 0.896 0.046
ZoomNet 6.78M 0.853 0.784 0.912 0.043
FSPNet 188.15M 0.879 0.816 0.915 0.048
FEDER-R2N 18.52M 0.862 - 0.913 0.042
ENTO(Ours) 4.17M 0.904 0.864 0.942 0.029

Table I: Comparative analysis of decoder parameter sizes across different models. Per-
formance metrics are evaluated on the NC4K dataset.

C Implementation Details

All input images are resized to the desired input size and augmented by random flipping
and rotation. ENTO can adopt various backbones for the encoder. We report the main results
in Tab. 2 using PVTv2-B4 [32] pretrained on ImageNet-1K and with 768× 768 input size.
For fair comparison with previous state-of-the-art models, and to demonstrate the versatility
of our architecture with any encoder, we also report ablation results using a comparable
backbone and input resolution in Tab. 3. For training our model, we set the learning rate
to 0.01 by default, except for the backbone (0.001). We linearly warm up the learning rate
for the first half of training and decrease it to 0 for the rest. We use SGD optimizer with
0.9 momentum and 0.0005 weight decay. We train our model up to 100 epochs and set the
batch size to 16. We conduct experiments on a single NVIDIA A100 GPU, taking about
10 hours to train a model. The Implementation details for other backbones are provided in
Appendix D.
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D Impartial Comparison Setting

Encoder Backbone Resolution Best Baseline Feature Channels CABs SABs Batch Size Learning Training
Level (L) per Level per Level Ours Base Rate Epohcs

PVTv2-B2 [32] 352×352 HitNet [12] 4 64 6 6 16 - 1e-2 100
704×704 HitNet [12] 4 64 6 6 16 16 1e-2 100

ViT [3] 384×384 FSPNet [13] 4 64 6 6 16 2 1e-2 100

Res2Net50 [5] 352×352 SINet-V2 [7] 3 64 5 5 32 36 1e-2 100
384×384 FEDER-R2N [10] 4 96 4 4 32 36 1e-2 120

ResNet50 [11] 576×576 ZoomNet [25] 3 64 5 5 8 8 1e-2 100

Table II: Experiment settings for impartial comparison. In all cases, we try to match the
level of features and other parameters used in the best baseline setting.

In Tab. 5, the main text demonstrates the experimental results of our model under various
combinations of encoder backbones and resolutions compared to the best-performing base-
line models. Since different backbones extract features in different numbers of layers and
channels, we adapt some model architectures or training settings according to them, mostly
following the settings of baseline models. For each backbone, features from the last L layers
are used. Tab. 3 shows the optimal settings of our model on each backbone condition ac-
cording to our experiments. The channels column indicates the number of feature channels
that are matched in the encoder, and the following decoder architecture is also adapted to the
input channel. For backbone training, the learning rate is applied at 1/10 of the specified rate
in the table. For a fair comparison with ZoomNet [25], we use the highest resolution (×1.5)
images among the multi-scale setting on inputs of the ZoomNet.

E Impact of Input Resolution

We experiment with various resolutions and report the performance of our proposed
model in Tab. III. We select various resolutions ranging from 352×352 to 896×896, consid-
ering the resolution choices in literature and average image size of the datasets we utilized:
COD10K (740×963) and NC4K (529×709).

As shown in Tab. III, higher resolutions of input images lead to improved performance
until the resolution reaches the average size of each dataset. We observed no performance
improvement or even slight degradation when the resolution exceeded the average size. Tak-

COD10K NC4K
(Avg. Size: 740×963) (Avg. Size: 529×709)

Resolution Sα ↑ Fw
β

↑ Eφ ↑ M ↓ Sα ↑ Fw
β

↑ Eφ ↑ M ↓

352×352 0.871 0.779 0.928 0.023 0.891 0.842 0.936 0.031
384×384 0.877 0.791 0.931 0.022 0.897 0.850 0.939 0.029
416×416 0.881 0.799 0.937 0.021 0.898 0.852 0.940 0.029
480×480 0.889 0.815 0.941 0.020 0.900 0.858 0.941 0.029
704×704 0.901 0.841 0.949 0.018 0.902 0.861 0.940 0.029
768×768 0.904 0.845 0.948 0.018 0.904 0.864 0.942 0.029
896×896 0.905 0.847 0.950 0.018 0.902 0.861 0.940 0.029

Table III: Ablation study on different input resolution. Bolded result shows our choice of
input resolution.
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ing into account these aspects and computational complexity, we select 768× 768 as the
representative resolution for our full model performance reported in Tab. 2.

F Analysis on Imperfect Ground Truths in CAMO
Dataset

As evidenced by the performance results in Tab. 2, most of the COD models perform the
worst in the CAMO [16] dataset. Similarly, ENTO’s performance in the CAMO dataset is
far lower than for other test datasets. We shed some light on why this may be so.

As evidenced in Fig. II, for some of the images in the CAMO dataset, the ground truth
masks are not detailed and lump parts of the object together with the background. In some
cases, crucial parts of an object are not included in the mask as well. In all such cases, ENTO
successfully recovers the “mistakes” of the ground truths, leading to a more detailed and
fine-grained segmentation map. Additionally, compared to baseline model, ZoomNet [25],
ENTO more successfully recovers the missing parts of the objects in the ground truth and
generates a more fine-grained segmentation map, matching the actual object. Such success
in the model would have been penalized in the evaluation process, as they do not match the
ground truth masks.
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ZoomNet ENTO Image Ground Truth

Figure II: Examples of our model outperforming the ground truths in the CAMO
dataset. The ground truths map neglects details of the object, lump parts of objects to-
gether, and miss crucial parts of the objects. Our model is able to capture all these details,
while baseline model, ZoomNet [25], misses such details.


