
D. JAYAKODY & T. AMBEGODA: SUPPLEMENTARY MATERIALS 1

Supplementary Materials
Dilith Jayakody
dilith.18@cse.mrt.ac.lk

Thanuja Ambegoda
thanuja@cse.mrt.ac.lk

Department of Computer Science and
Engineering
University of Moratuwa
Moratuwa, Sri Lanka

A Implementation Details

A.1 Adaptations
Pretraining for valid output generation. Each iteration of MCTS spends a non-negligible
amount of time evaluating the expression. Since the expression validity can be evaluated with
a (1,1,nchannels)-shaped tensor, the expression evaluation time can be significantly reduced
during the pretraining stage. As a result, the model can learn to generate valid expressions
much faster. This also gives the added benefit of providing a pretrained model to initialize
weights for a new task, assuming the new task works with the same number of channels.

During the pretraining phase, certain tendencies are observed in the behavior of the agent.
Firstly, the agent often generates short expressions. This may be because the more complex
the expression, the easier it is to deviate from a regular range of values. Secondly, the
agent tends to avoid opening parentheses. This is likely caused by the fact that once an
opening parenthesis is generated, the expression remains invalid until a closing parenthesis
is generated and this leads to a higher chance of negative rewards.

It is also observed that a significant fraction of existing remote-sensing indices is "unit-
less". In other words, if each channel of the multispectral image is given a unit of measure-
ment, the spectral index resulting from a mathematical operation between those bands lacks
a unit.

Accordingly, to motivate the agent to address the aforementioned considerations, the
reward for pretraining r(s) is defined as presented in equation 4.

rlen = 0.02× lexp (1)
rpar = 0.2×npar (2)

runit =

{
1, if expression is unitless
0, otherwise

(3)

r(s) = 0.5+ rlen + rpar + runit (4)

where lexp is the length of the expression and npar is the number of pairs of parentheses
in the expression.

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 D. JAYAKODY & T. AMBEGODA: SUPPLEMENTARY MATERIALS

Previous Action Valid Actions
start,(,+,−,×,/ (,channel
channel,) +,−,×,/,),=

Table 1: The list of valid actions, given the previous action, where start refers to the starting
state (empty expression) and channel refers to a channel of the image.

Action validity. At each state, we define a set of valid actions based on the previous action
as shown in Table 1. In addition, certain other checks are performed to avoid invalidity and
redundancy where possible.

• The number of “)” symbols in the expression is always maintained to be less than or
equal to the number of “(“ symbols in the expression. In other words, generating the
“)” symbol is defined to be invalid if all opened parentheses have already been closed.

• Since enclosing a single symbol within parentheses is redundant as the parentheses
can simply be removed, generating a closing parenthesis, two actions after generating
an opening parenthesis, is defined to be an invalid action.

Adaptive Data Buffer. The classification of expressions as high-reward or low-reward
can be achieved by various criteria. For the experiments performed in this research, this
classification is performed by using an adaptive data buffer. The idea is to progressively
reduce the size of the data buffer to get the GPT-based model to overfit to a set of expressions
that provide a higher reward. We chose to implement this functionality as follows. The data
collection phase is initially executed until the buffer reaches a certain capacity. The iterations
that follow execute both the data collection phase and training phase. After each iteration,
the buffer size is set to 95% of its current capacity, dropping the expressions within the 5% of
lowest rewards. This is repeated until a certain minimum capacity is reached. This minimum
capacity would be a relatively low number (e.g.: 20), such that the model may overfit to those
expressions while also exploring expressions that contain similar symbols and structures.

A.2 Evaluated Index Preprocessing

Prior to being used in reward calculation, the evaluated index is updated by standardizing,
clipping, and scaling to a [0, 1] range (Eq. 5 - 7).

standardize(E) = E −µE

σE
(5)

clip(E) = max{min{E ,Zmax},Zmin} (6)

scale(E) = E −Zmin

Zmax −Zmin
(7)

where E is the evaluated index, µE and σE are the channel-wise means and standard devia-
tions of E , and Zmin and Zmax are the minimum and maximum Z-scores permitted. We use
Zmin =−3 and Zmax = 3 in our experiments.



D. JAYAKODY & T. AMBEGODA: SUPPLEMENTARY MATERIALS 3

Function Correlation t-statistic p-value
IoU 0.0554 0.7807 0.4359
CS 0.0599 0.8444 0.3995
F1 0.0667 0.9406 0.3481
AUC 0.0776 1.0952 0.2748
PCC 0.1417 2.0142 0.0453

Table 2: A statistical comparison of the correlations of each heuristic function with the
training score

Size Baseline NDVI Generated
R RM R RM

UNet 58.0 74.0 73.6 73.6 73.7
UNet++ 60.9 70.2 72.4 73.6 70.3

Table 3: Effects of Generated Indices versus Existing Indices. The table shows the com-
parison between the IoU scores of the multiple-index replacement method (RM) and the
single-index replacement method (R) for the NDVI index and the index generated by the
proposed method for the Grass class of the RIT-18 dataset.

A.3 GPT-based Model Configurations
A.3.1 Model Architecture

Number of layers = 4
Number of attention heads = 4
Embedding size = 128
Dropout = 0.0

A.3.2 Adam Optimizer

Learning rate = 1e−4
Weight decay = 0.1
Beta1 = 0.9
Beta2 = 0.95

B Additional Experiments

B.1 Qualitative Comparison
We perform a qualitative comparison between the baseline (B) model and the multi-index
replacement (RM) mode (Figure 1). Through the comparison, we observe that the RM mode
tends to be relatively less confused by objects that blend into the background in terms of
color.

B.2 Effects of Generated Indices versus Existing Indices.
To evaluate the performance of the generated indices in comparison to pre-existing indices,
we compare NDVI to the expression for the Grass class of the RIT-18 dataset. We choose
this setting due to the specific utility of NDVI in the identification of greenery in prior work.



4 D. JAYAKODY & T. AMBEGODA: SUPPLEMENTARY MATERIALS

Image

GT

B

RM (Ours)

Car Person Bike Cloud Landslide Grass Sand

Figure 1: Qualitative Comparison between the baseline result (B) and Multi-index replace-
ment (RM) across the datasets with the UNet model, along with the ground truth (GT).

Despite the NDVI index being specifically created for this context, we observer comparable
results when using the generated indices

C Code
Please note that the codebase for the project is available in the supplementary material in the
code.zip file. The README.md file within the codebase provides instructions on how to
set up the workspace, download the dataset, and execute the algorithms.

Once the dataset is downloaded and extracted, the resulting directory structure is ex-
pected to look as follows:

./
|- dataset/
|- indexrl/
|_ dataset.py
|_ dataset_config.py
|_ ...


