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Abstract

This paper explores a novel paradigm in low-bit (i.e. 4-bits or lower) quantization,
differing from existing state-of-the-art methods, by framing optimal quantization as an
architecture search problem within convolutional neural networks (ConvNets). Our frame-
work, dubbed CoRa (Optimal Quantization Residual Convolutional Operator Low-Rank
Adaptation), is motivated by two key aspects. Firstly, quantization residual knowledge,
i.e. the lost information between floating-point weights and quantized weights, has long
been neglected by the research community. Reclaiming the critical residual knowledge,
with an infinitesimal extra parameter cost, can reverse performance degradation without
training. Secondly, state-of-the-art quantization frameworks search for optimal quantized
weights to address the performance degradation. Yet, the vast search spaces in weight
optimization pose a challenge for the efficient optimization in large models. For exam-
ple, state-of-the-art BRECQ necessitates 2× 104 iterations to quantize models. Funda-
mentally differing from existing methods, CoRa searches for the optimal architectures of
low-rank adapters, reclaiming critical quantization residual knowledge, within the search
spaces smaller compared to the weight spaces, by many orders of magnitude. The low-
rank adapters approximate the quantization residual weights, discarded in previous meth-
ods. We evaluate our approach over multiple pre-trained ConvNets on ImageNet. CoRa
achieves comparable performance against both state-of-the-art quantization-aware train-
ing and post-training quantization baselines, in 4-bit and 3-bit quantization, by using less
than 250 iterations on a small calibration set with 1600 images. Thus, CoRa establishes
a new state-of-the-art in terms of the optimization efficiency in low-bit quantization. Im-
plementation can be found on https://github.com/aoibhinncrtai/cora_
torch.

1 Introduction
ConvNets [1, 23] are favored as vision foundation models, offering distinct advantages such
as the inductive bias in modeling visual patterns [6, 16, 35], efficient training, and hardware-
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Figure 1: CoRa framework: Searching for the optimal adapters, reclaiming the quantization
residual knowledge, instead for the optimal quantized weights. The low-rank convolutional
adapter at the l-th layer B(l)

rl ⊛A(l)
rl is determined by a discrete integer rl .

friendliness [27]. Network quantization is indispensable in enabling efficient inference when
deploying large models on devices with limited resources [14, 25, 29, 33]. Representing
floating-point tensors as integers significantly reduces the computational requirements and
memory footprint.

Yet, low-bit quantization often leads to severe performance degradation [5, 11, 24]. For
example, the standard accuracy of a resnet18, pretrained on ImageNet [7], plummets to
a mere 1.91% from 67.32%, with 4-bit weight-only quantization (WOQ), using min-max
clipping [31]. To tackle this issue, two research lines are undertaken: quantization-aware
training (QAT) and post-training quantization (PTQ) [11, 13, 30].

QAT methods seek the optimal quantized weights during the training process to minimize
performance degradation. Despite their promising performance, the substantial computa-
tional and data requirements pose major challenges in deployment efficiency. For instance,
the state-of-the-art PACT [4] entails a minimum of 108.12 iterations with 1.2M training sam-
ples to converge on ImageNet. Additionally, empirical evidence shows that QAT methods
often yield very limited performance at low-bit quantization due to optimization difficulty
[10, 26, 32]. PTQ methods, e.g. AdaRound [30] and BRECQ [22], overcome these limita-
tions by reconstructing the optimal quantized weights of pre-trained models, with optimiza-
tion on small calibration sets; these potentially reduce computational and data requirements.

Notably, both state-of-the-art QAT and PTQ methods quantize models by optimizing
within weight spaces. Their optimization efficiencies are substantially hindered by the vast
dimensions of search spaces. For example, a resnet50 contains over 2.5M trainable parame-
ters [15], suggesting a search space of the dimension of R25,000,000. The state-of-the-art PTQ
method BRECQ needs at least 2× 104 iterations to converge for a resnet50 pre-trained on
ImageNet.

This research delves into a question: “Beyond the quantization methods with weight
space optimization, does an alternative paradigm exist?”. Intuitively, the quantization
residual knowledge – namely, the quantization residual weights between floating-point weights
and quantized weights – retains vital information lost during the quantization process. This
quantization residual knowledge, which has long been overlooked by the research commu-
nity, holds the potential value that reverses performance degradation without training. Mo-
tivated by this perspective, our approach, CoRa, as shown in Figure 1, explores a novel
paradigm, differing from state-of-the-art QAT and PTQ methods: by seeking the optimal
low-rank adapters [17], reclaiming the residual knowledge; thus reversing the perfor-
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mance degradation, and establishing a new state-of-the-art in terms of the optimization
efficiency.

A low-rank adapter consists of two cascaded convolutional filters (e.g. A and B) with
significantly lower sizes, which are directly converted from high-rank quantization residual
weights. As shown in Figure 1, the l-th layer adapter B(l)

rl ⊛ A(l)
rl , with a low rank rl , is

attached to the l-th layer convolutional filter, and approximates the quantization residual
weights. CoRa seeks the optimal ranks r = {r1, · · · ,rL} for all adapters. Surprisingly, earlier
works [8, 17, 19, 34, 37, 38, 39] do not address the problem of converting the existing
weights of convolutional operators into the weights of the adapters without training. To
tackle this problem, we prove a result, as stated in Residual Convolutional Representation
Theorem 1.

The search space of the low-rank adapters in a model is significantly smaller by many
orders of magnitude compared to the space of weights. For instance, a resnet50 has 53
convolutional filters. In this case, the structure of the low-rank adapters is only controlled
by 53 parameters (i.e. 53 ranks). This suggests that the search space is of dimension R53,
smaller by 6 orders of magnitude than the weight space. Thanks to the smaller search space,
CoRa converges within less than 250 iterations for pre-trained models on ImageNet, yet
achieves comparable performance against both state-of-the-art QAT and PTQ baselines.

This research is in the scope of low-bit WOQ and ConvNets. Our contributions are
summarized as:

1 CoRa method. We present an efficient, low-bit, and PTQ framework for ConvNets,
by framing optimal quantization as an architecture search problem, to re-capture quan-
tization residual knowledge with low-rank adapters;

2 Neural combinatorial optimization. We introduce a differentiable neural combina-
torial optimization approach, searching for the optimal low-rank adapters, by using a
smooth high-order normalized Butterworth kernel;

3 Training-free residual operator conversion. We show a result, converting the weights
of existing high-rank quantization residual convolutional operators to low-rank adapters
without training, as stated in Theorem 1.

2 Preliminaries
Dataset and classifier. Let ⟨X ,Y⟩ be an image dataset where X denotes images and Y
denotes labels. We use Q(y|x;θ) to represent a classifier, where θ denotes parameters. Q
predicts the probability of a discrete class y given image x.

Quantization. We use [[W ]]n to denote the n-bit quantization of tensor W . The clipping
range refers to the value range in quantization [11]. We use two clipping schemes: (1)
min-max clipping chooses the minimum and maximum values. (2) normal clipping chooses
[µ−k ·σ ,µ+k ·σ ], where µ denotes the mean of the tensor, σ denotes the standard deviation
of the tensor and k determines the range. Details are in Appendix A.

Kolda mode-n matricization and tensorization. Let Z ∈RI1×···×IN be a N-order tensor
[20]. The Kolda mode-n matricization of Z [20], denoted as Z(n), refers to unfolding Z so
that: the n-th dimension becomes the first dimension, and the remaining dimensions are
squeezed as the second dimension by Πi ̸=nIi. Let Y ∈ RIn×J (J = Πi̸=nIi) be a matrix. The
mode-n tensorization of Y , denoted as Y[n,I1×In−1×In+1×···×IN ], refers to folding Y into the shape
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I1×·· ·× IN . Readers can further refer to the literature [20, 21, 40]. Details are also provided
in Appendix B.

Residual convolutional operator. Let W ∈Rm×n×k1×k2 be the weights of a convolution
operator, where m denotes output channels, n denotes input channels and k1 × k2 denotes
filter kernel size. We refer to W as convolutional operator for brevity. We use W ⊛ x to
denote the convolution operation. Convolutional operators are linear operators. We refer
to ∆[[W ]]n := W − [[W ]]n as quantization residual operator, or residual operator if without
ambiguity.

Theorem 1 (Residual Convolutional Representation). Suppose a singular value decomposi-
tion given by: (∆[[W ]]n)(1) =USrV T (r = rank(Sr)). Then the factorization holds true:

W ⊛ x = [[W ]]n ⊛ x+ B⊛A︸ ︷︷ ︸
residual operator

⊛x (1)

where A=(S
1
2
r V T )[1,r×1×1] and B=(US

1
2
r )[1,n×k1×k2]. The B⊛A is referred as r-rank residual

operator. The proof is provided in Appendix C.

3 Method
We frame the optimal quantization as an architecture search problem. Suppose a L-layer
floating-point ConvNet Q:

Q(y|x;θ) := Q(y|x;W (1), · · · ,W (L)) (2)

in which W (l) denotes the parameters of the l-th layer and θ := {W (1), · · · ,W (L)}. The
quantized Q with bit-width n is:

Q(y|x; θ̃) := Q(y|x; [[W (1)]]n, · · · , [[W (L)]]n) (3)

where θ̃ := {[[W (1)]]n, · · · , [[W (L)]]n}.
Approximating residual knowledge. According to Theorem 1, in the l-th layer, the

residual operator ∆[[W (l)]]n is approximated by a rl-rank residual operator:

W (l)⊛ x− [[W (l)]]n ⊛ x = ∆[[W (l)]]n ⊛ x ≈ B(l)
rl ⊛A(l)

rl ⊛ x. (4)

Notably, the A(l)
rl and B(l)

rl are directly converted from ∆[[W (l)]]n without training, which is
guaranteed by Theorem 1. By approximating the residual operators via Equation (4), the
quantized model is written as:

Q(y|x; θ̃ ,φ ,r) := Q(y|x; [[W (1)]]n +B(1)
r1 ⊛A(1)

r1 , · · · , [[W (L)]]n +B(L)
rL ⊛A(L)

rL ) (5)

where φ = {B(1)
r1 ⊛A(1)

r1 , · · · ,B(L)
rL ⊛A(L)

rL } are the low-rank residual operators, and r = {r1, · · · ,rL}
(0 ≤ rl ≤ Rl , rl ∈ N) are the parameters controlling the ranks of these operators. The imple-
mentation is as shown in Figure 1.

Discrete combinatorial optimization. Suppose r = {r1, · · · ,rL} are a set with L discrete
ranks, controlling the structure of the low-rank adapters in Figure 1. Suppose Rl is the
l-th layer maximum rank of rl . Formally, the optimization objective is to seek a set of
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Figure 2: Differentiable thresholding with a high-order normalized Butterworth kernel Φ(rl).
The S(l) is in the 14-th layer of a pre-trained resnet18 on ImageNet. The cut-off rank rl is
103.

optimal discrete r, by maximizing the performance on a calibration set ⟨X ,Y⟩, subject to an
adaptation parameter budget constraint:

r∗ = argmin
r

{
E

⟨x,y⟩∼⟨X ,Y⟩
− logQ(y|x; θ̃ ,φ ,r)

}
subject to ω

T r ≤ b,0 ≤ ri ≤ Ri, ri ∈ N, 0 ≤ b ≤ 1 (6)

where r∗ denotes the optimal ranks, b denotes normalized maximum adaptation parameter
budget (i.e. target budget), and ω := {ω1, · · · ,ωL} denotes the rank normalization coeffi-
cients used to compute the normalized parameter size. The ωl is given by: ωl := 1

Rl
· Θl

∑
L
i=1 Θi

where Θi is the i-th layer parameter size, as proved in Appendix D. The optimization search
space size is less than dimension of RL. The only learnable parameters are r.

Adapter parameter budget constraint. We limit the amount of the parameters of the
adapters by:

min
r

{
λ · exp

{
ReLU(ωT r−b)

}}
(7)

where λ ∈ R is a penalty coefficient. The motivation of using exp(·) is to obtain non-linear
gradients favoring gradient-based optimization, by assigning smaller gradients to smaller
ranks, instead of the constant gradients ω . The ReLU(·) is used to stop gradients if the
running budget ωT r is already below the target budget b.

3.1 Differentiable relaxation

Equation (6) is not differentiable with respect to r. Solving the discrete combinatorial op-
timization problem in Equation (6) often entails iterative algorithms, e.g. evolutionary al-
gorithms (EA) and integer programming (IP) [2, 28, 36]. Nevertheless, the huge discrete
search spaces remain a significant hurdle. For instance, the number of possible combina-
tions of low-rank adapter sizes in a resnet50 is above 1018.

To enable efficient optimization, firstly, we relax the r in Equation (6) from discrete
integers to continuous values. Secondly, we differentiably parameterize the operations of
choosing r, by using a high-order normalized Butterworth kernel. With these endeavors,
Equation (6) is differentiable with respect to r. We are able to use standard gradient descent
algorithms to efficiently optimize (e.g. SGD and Adam).

Citation
Citation
{Bartz-Beielstein, Branke, Mehnen, and Mersmann} 2014

Citation
Citation
{Mazyavkina, Sviridov, Ivanov, and Burnaev} 2021

Citation
Citation
{Wolsey} 2020



6 R. LUO ET AL.: RECLAIMING QUANTIZATION RESIDUAL KNOWLEDGE

0 25 50 75 100

0.06

0.08

0.10

steps

pa
ra

m
et

er
 b

ud
ge

t

running budget (lr = 0.5 × 10 2) running budget (lr = 1.0 × 10 2) target budget

(a) running budget (ωT r)

co
nv

1

la
ye

r1
.0

.c
on

v1

la
ye

r1
.0

.c
on

v2

la
ye

r1
.1

.c
on

v1

la
ye

r1
.1

.c
on

v2

la
ye

r2
.0

.c
on

v1

la
ye

r2
.0

.c
on

v2

la
ye

r2
.0

.d
ow

ns
am

pl
e.

0

la
ye

r2
.1

.c
on

v1

la
ye

r2
.1

.c
on

v2

la
ye

r3
.0

.c
on

v1

la
ye

r3
.0

.c
on

v2

la
ye

r3
.0

.d
ow

ns
am

pl
e.

0

la
ye

r3
.1

.c
on

v1

la
ye

r3
.1

.c
on

v2

la
ye

r4
.0

.c
on

v1

la
ye

r4
.0

.c
on

v2

la
ye

r4
.0

.d
ow

ns
am

pl
e.

0

la
ye

r4
.1

.c
on

v1

la
ye

r4
.1

.c
on

v2

0

10

20

30

40

50

op
tim

al
 ra

nk

heuristic (acc@top-1 58.69) optimal (acc@top-1 65.23)

(b) solution

Figure 3: Optimization iterations and solution. The experiments are with resnet18 pre-
trained on ImageNet.

3.2 Parameterized differentiable thresholding

Hard thresholding. Suppose S(l) is the singular value matrix of [[∆W (l)]]n. Suppose S(l)rl

chooses the rl largest values of S(l):

S(l) = diag(σ (1)
1 , · · · ,σ (l)

Rl
) S(l)rl = diag(σ (1)

1 , · · · ,σ (l)
rl ,0, · · · ,0) 0 ≤ rl ≤ Rl . (8)

Formally, choosing the rl can be formulated as the Hadamard product (i.e. element-wise
product) of a thresholding mask matrix Φ∗(rl) and S(l) in that:

S(l)rl = Φ
∗(rl)⊙S(l) Φ

∗(rl) = diag(1, · · · ,1︸ ︷︷ ︸
rl ones

, 0, · · · ,0︸ ︷︷ ︸
Rl−rl zeros

). (9)

We refer to Equation (9) as hard-thresholding, which is not differentiable with respect to r.
Soft thresholding. We differentiably approximate the hard-thresholding with a high-

order normalized Butterworth kernel (NBK) [3]. An k-order NBK with a cut-off rank rl is a
vector map Φ(rl) : rl 7→ [0,1]Rl defined by:

Φ(rl) :=

 1√
1+( r

rl
)2k

Rl

r=1

rl ≪ Rl (10)

where n is the order. Figure 2(a) shows an example of S(l). Figure 2(b) shows an example of
NBK. Figure 2(c) shows the results of the differentiable thresholding with NBK.

Converting residual operator to low-rank operator. In the l-th layer, we differentiably
convert a high-rank residual operator ∆[[W (l)]]n into a low-rank operator B(l)

rl ⊛A(l)
rl with rank

rl , by using Equation (10):

∆[[W (l)]]n ≈ B(l)
rl ⊛A(l)

rl (11)

≈ (U (l)[Φ(rl)⊙S(l)
1
2 ])[1,n×k1×k2]⊛ ([Φ(rl)⊙S(l)

1
2 ]V (l)T

)[1,rl×1×1]. (12)

which is differentiable with respect to rl .
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3.3 Neural combinatorial optimization

By combining Equation (6) and Equation (7), the optimization loss is:

L(r) := E
⟨x,y⟩∼⟨X ,Y⟩

{
− logQ(y|x; θ̃ ,φ ,r)+λ · exp

{
ReLU(ωT r−b)

}}
. (13)

The optimal r = {r1, · · · ,rL} are found using gradient descent optimizers, e.g. SGD and
Adam.

Heuristic choice of ranks. This method serves as a baseline. The rl is heuristically
chosen as rl = ⌊b ·Rl⌋, proportionally assigning the l-th layer rank according to the budget
b. For example, suppose the maximum rank at the l-th layer is 512 and budget b is set to 5%,
the heuristic rl is chosen as ⌊512×0.05⌋= 25.

Intriguing observation. Figure 3(a) shows the running budget ωT r during the optimiza-
tion. Figure 3(b) shows an example of the solution on a resnet18 on ImageNet. Our analysis
in terms of the solutions from a variety of ConvNets suggests that: The heuristic choices
often overstate the importance of middle to last layers; conversely, optimal solutions
underscore the importance of beginning to middle layers. The full solutions are provided
in Appendix F.
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Table 1: Top-1 accuracy comparison of low-bit quantization. We use marker × to indicate
that the results are not available.

Model bits FP32 CoRa QAT Baselines PTQ Baselines
PACT LSQ DSQ DoReFa-Net AdaRound AdaQuant BRECQ

resnet18 4 67.32 65.23 66.08 67.89 66.99 65.99 65.08 65.18 66.96
resnet50 74.52 72.85 × 73.84 73.39 × 72.81 72.80 73.88
resnet18 3 64.50 65.31 66.13 × × 64.47 55.04 66.12
resnet50 72.81 × × × × 71.06 65.43 70.87

# of iterations 108.38 ≤ 102.40 108.12 108.03 108.08 108.38 104.30 103.73 104.30

training size 1.2M 1600 1.2M 1.2M 1.2M 1.2M 2048 1000 1024

3.4 Tricks for stable optimization
Stable optimization for the proposed neural combinatorial optimization in Section 3.3 is
challenging. We adopt several tricks to numerically stabilize the optimization process.

• Gradient clipping. To stabilize the optimization, the solver clips the gradients into
the range of [−0.2,0.2].

• Adaptive gradient. Equation (7) gives non-linear gradients with respect to ranks.
Smaller ranks have smaller gradients towards zero, while larger ranks have larger gra-
dients. We believe this design favors the stabilization of optimization.

• Solution clamping. The solver clamps the ranges of the solutions after every gradient
update, guaranteeing that the rank is not less than 1 and not greater than the limit Rl .

• Anomaly reassignment. The solver detects numerical anomalies. If a NaN rank value
is detected, it is replaced with rank 1.

4 Experiments
We conduct experiments from five aspects: (1) ablation study (Section 4.1), (2) comparing
with state-of-the-art QAT and PTQ baselines (Section 4.2), (3) extensive evaluation (Sec-
tion 4.3), (4) performance scalability with respect to model sizes (Section 4.4) and (5) hyper-
parameter sensitivity (Section 4.5).

Reproducibility. We sample 1600 images from the ImageNet validation set as our cal-
ibration set while using the remainder as our validation set. We use normal clipping with
k = 4.0 to quantize the main network and min-max clipping to quantize adapters. The order
n of NBK is set to 4.0. The penalty coefficient λ is set to 1. The batch size is 32. The
target budget b is set to 5%, which results in a 1.25% increase in memory footprint with
8-bit quantization for low-rank adapters. The optimizer is Adam without weight decay. The
learning rate is set to 0.01. We use a maximum 250 iterations for all experiments.

Testbed. All experimental results, including the measured results of floating-point ref-
erence accuracy, are conducted on the M2 chip of a MacBook Air, equipped with a GPU of
size 24 GiB. Due to the choice of the validation set, in tandem with the random seed and
the hardware acceleration implementation in the testbed, the results of reference accuracy
are slightly lower compared to the results from pytorch. However, this does not affect the
results, we obtain using pytorch, for a fair comparisons with baselines. We report the results
that we measured on our own testbed rather than using the results from the literature.

Equivalent quantization bit-width. Let n and m be the quantization bit-widths of the
main network and adapters. The equivalent quantization bit-width is given as: n+m ·b. For



R. LUO ET AL.: RECLAIMING QUANTIZATION RESIDUAL KNOWLEDGE 9

FP
32

W
OQ

4

Co
Ra

-H
 (4

.4
bi

ts
)

Co
Ra

-O
 (4

.4
bi

ts
)

0

20

40

60

80
60.42

68.0167.78

0.5

densenet121

FP
32

W
OQ

4

Co
Ra

-H
 (4

.4
bi

ts
)

Co
Ra

-O
 (4

.4
bi

ts
)

51.97
66.2967.5

0.16

inception

FP
32

W
OQ

4

Co
Ra

-H
 (4

.4
bi

ts
)

Co
Ra

-O
 (4

.4
bi

ts
)

58.69
65.2367.32

16.43

resnet18

FP
32

W
OQ

4

Co
Ra

-H
 (4

.4
bi

ts
)

Co
Ra

-O
 (4

.4
bi

ts
)

60.57
69.5471.23

5.52

resnet34

FP
32

W
OQ

4

Co
Ra

-H
 (4

.4
bi

ts
)

Co
Ra

-O
 (4

.4
bi

ts
)

65.45
72.8574.52

5.63

resnet50

ac
c@

to
p-

1
CoRa-H (4.4bits) CoRa-O (4.4bits) FP32 WOQ4

Figure 9: Top-1 accuracy of multiple vision architectures on ImageNet with 4-bit quantiza-
tion.

example, suppose n = 4, m = 8 and b = 5%, the equivalent quantization bit-width is 4.4-bits.
The proof is provided in Appendix E.

4.1 Ablation study
We conduct ablation experiments to show the design considerations in: (1) normal clipping
is better than min-max clipping, (2) the results with optimal ranks outperform the results
with heuristic choices, and (3) quantizing residual adapters with 8-bits does not affect per-
formance. The results are shown in Figure 4.

Intriguingly, we can quantize adapters while the performance remains almost unchanged.
This can significantly reduce the amount of extra parameters which are used to retain residual
knowledge.

4.2 Comparing with baselines
We compare our method against both state-of-the-art QAT and PTQ baselines. We choose
four QAT baselines: PACT [4], LSQ [10], DSQ [12], and DoReFa-Net [41]. We choose
three PTQ baselines: AdaRound [30], AdaQuant [18], and BRECQ [22]. We quantize the
resnet18 and resnet50 (pre-trained on ImageNet) with 4-bits and 3-bits quantization.

Top-1 accuracy. Our results achieve comparable performance against the baselines. The
results are shown in Table 1. Optimization efficiency. Our method is more efficient by many
orders of magnitude than state-of-the-art baselines. The results are shown in Figure 5 and
Table 1. Notably, our method uses only 250 iterations with very minimum extra parameter
cost. We have established a new state-of-the-art in terms of optimization efficiency.

4.3 Extensive evaluation
We show the results of extensive performance evaluation over multiple image classifiers
pre-trained on ImageNet in Figure 9. Our results achieve comparable performance against
the floating-point reference models with the differences within 2.5%. The full solutions are
provided in Appendix F.

4.4 Performance scalability
Figure 6 shows the performance scalability of CoRa with respect to model sizes, which are
assessed by the numbers of filters. The result shows that the top-1 accuracy difference to
floating-point models decreases with respect to the number of filters in models.
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4.5 Hyper-parameter sensitivity

There are two hyper-parameters: the order n of the NBK in Equation (10) and the λ in
the loss function. We empirically investigate how their choices affect performance. The
experiments are on a resnet18 pre-trained on ImageNet. Figure 7 shows that the NBK order
k = 4 achieves best performance. Figure 8 shows that λ achieves best performance between
0.5 and 1. It is notable that k and λ are model-dependent.

5 Related work

Low-rank convolutional operator approximation. Low-rank approximation of convolu-
tional operators is promising in accelerating the computations [23]. However, convolution
operations are not matrix multiplications. Conventional low-rank approximation, e.g. LoRa
[17] and QLoRa [9], fails to approximate convolutional operators. Relatively few works
in the literature have explored this problem. Denton et al. decompose filters into the outer
product of three rank-1 filters by optimization [8]. Rigamonti et al. use rank-1 filters to ap-
proximate convolutional filters by learning [34]. Jaderberg et al. reconstruct low-rank filters
with optimization, by exploiting the significant redundancy across multiple channels and fil-
ters [19]. A recent work, Conv-LoRA, approximates filters with the composed convolutions
of two filters for low-rank fine-tuning on ConvNets [39]. However, Conv-LoRA does not
solve the problem of converting existing operators to low-rank operators without training.
Previous works need to reconstruct low-rank filters by learning, thus they do not satisfy our
needs. CoRa uses Theorem 1 to convert existing residual operators into low-rank operators
without training.

6 Future work

CoRa introduces a novel paradigm in low-bit quantization and demonstrates significant op-
timization efficiency, with a new state-of-the-art result, as shown by our experiments com-
pared to baselines. This paper exclusively investigates this paradigm on ConvNets. Future
research will aim to explore this paradigm further from three aspects: (1) enhancing the per-
formance of existing quantization methods (e.g. QAT and PQT) by reclaiming the residual
knowledge using CoRa; (2) extending this paradigm to architectures beyond ConvNets, such
as transformers; and (3) broadening the scope to more diverse tasks, including large vision
models (LVMs) and large language models (LLMs).

7 Conclusions

We explore a novel paradigm, in optimal low-bit quantization, differing from existing state-
of-the-art methods, by re-framing the problem as an architecture search problem, of op-
timally reclaiming quantization residual knowledge. Thanks to significantly smaller search
spaces of adapters, our method is more efficient yet achieves comparable performance against
state-of-the-art baselines. CoRa has established a new state-of-the-art in terms of the opti-
mization efficiency.
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