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1 Further Implementation Details
The models are trained with the SGD optimizer, using the warmup and multistep learning
rate adjustment strategies as in prior works [16, 30]. The batch size for sampled images is 16.
On Visual Genome, models with Motifs or VCTree baselines [30] are trained for a maximum
of 24K iterations, while models using PeNet baseline are trained for 30K iterations, as in the
original PeNet. On OpenImage, the maximum iteration is 30K. Moreover, we describe in
detail the selection of hyperparameters in Sec. 8.3. The positive gradients, negative gradients,
and their gradient ratio can be obtained through Eq. 4 in Sec. 2.

For the visual encoder, besides the common visual encoder trained under a closed-set
hypothesis (i.e., RX101-FPN [13, 26] backbone in Faster R-CNN), we also compare the
CLIP-RN101 visual encoder [18] trained under an open-set setting in Sec.6.2. In addition
to the CLIP language model, we also compare the BERT language model in Sec.8.2. In the
case of CLIP, the language model is the text encoder of CLIP-RN101 [18]. For BERT, we
utilize its base-scale model as the language model.

2 Gradient Analysis for Prompt Learning in SGG
In this section, we investigate the association between accumulated gradients and sample size
in prompt learning for SGG. Additionally, we explore how positive and negative gradients
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impact the posterior probabilities of SGG models. The probability for class r is given as:

p̂r =
exp(zr/τ)

∑ j ̸=r exp(z j/τ)+ exp(zr/τ)
, (1)

where zr is the logits of r-th class obtained through cosine similarities between text and
relation embeddings, and τ is the temperature hyper-parameter. Given a training sample xr
with relation label r, the cross-entropy loss can be formulated as:

L(xr) =−log(p̂r). (2)

The gradients of the L with respect to z for sample xr are formulated as: g+j = ∂L(xr)
∂ z j

=− 1
τ
(1− p̂ j), j = r

g−j = ∂L(xr)
∂ z j

= 1
τ

p̂ j, j ̸= r,
(3)

where g+j and g−j denote the generated positive and negative gradients during the optimiza-
tion of sample xr. Effectively, each label category r will get a positive gradient g+j , while
other categories j ̸= r will receive a discouraging gradient g−j from sample xr. We define
the sample set with class r as Sr and with other classes as S¬r. The accumulated positive
gradients G+r , negative gradients G−r , and their ratio Ar for class r can be formulated as:

G+r = ∑i∈Sr |(g
+
r )i|

G−r = ∑i∈S¬r |(g
−
r )i|

Ar =
G+r
G−r

,
(4)

where i denotes the index of sample (xr)i in the sample set Sr. Based on Eq. 4, we observe
that the number of samples is proportional to the accumulated gradients. As the percentage
of samples with class r (i.e., |Sr |

|Sr |+|S¬r | ) increases, there is a corresponding increase in the ac-
cumulated positive gradients for class r. On the other hand, an increase in the proportion of
samples from other classes (i.e., |S¬r |

|Sr |+|S¬r | ) leads to a corresponding increase in the accumu-
lated negative gradients for class r. Therefore, we arrive at the association between sample
proportion and accumulated gradients as follows:{ |Sr |

|Sr |+|S¬r | ∝ G+r
|S¬r |

|Sr |+|S¬r | ∝ G−r .
(5)

Therefore, obtaining a higher ratio of positive gradients for class r can increase the sam-
ple proportion of class r. Given that |Sr |

|Sr |+|S¬r | =
1

1+|S¬r |/|Sr | , there are two ways to increase
the sample proportion of class r: i) adding samples in Sr and ii) reducing samples in S¬r.

Moreover, according to Bayes’ theorem, the posterior probability p(y|x) of y given image
x can be formulated as:

p(y|x) ∝ p(y)p(x|y). (6)

For category r, its prior probability is defined as p(y = r), denoted as pr, which is pro-
portional to the sample number |Sr| of class r [17, 23]. Therefore, based on Eq. 4-6, we can
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derive the mathematical relationship as follows:
p̂r ∝ pr ∝ |Sr| ∝ G+r
p̂r ∝ pr ∝

1
|S¬r | ∝

1
G−r

p̂r ∝ pr ∝ |Sr| ∝
1

|S¬r | ∝ Ar.

(7)

In the proposed HP, the sample category scope is progressively narrowed for BP, FIP, and
IIP, respectively. Moreover, to eliminate the influence of high-proportion discouraging nega-
tive gradients from majority classes, we respectively exclude the background class and head
class relation embeddings in FIP and IIP, which can also retain as many relation embeddings
for minority classes as possible. We define the training sample set for BP, FIP, and IIP as
Sbp, Sfip, and Siip. For a tail class r, the relationship among them is: |Sbp

¬r| > |Sfip
¬r| > |Siip

¬r|.
Based on the conclusion in Eq. 7, we can derive the following relationship formula:

Abp
r <Afip

r <Aiip
r . (8)

Consequently, a tail class in IIP has a higher accumulated positive gradient ratio than in
FIP and BP. Similarly, a foreground class in FIP has a higher accumulated positive gradient
ratio than in BP, which is the plain prompt used in SGG models. Therefore, HP can aid in
enhancing the learning of tail classes and foreground classes for SGG models. According to
Eq. 7, we can infer that HP can also help improve their posterior probabilities.

3 Relation Feature Extractor

🔥
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Figure 1: Overall framework of relation fea-
ture extractor. The right part (a) is the visual
encoder RX101 from Faster-RCNN, and (b)
is the visual encoder RN101 from CLIP.
Some intermediate variables are omitted in
this framework diagram for clarity.

The relation feature extractor is used to ex-
tract regional relation features from input im-
ages I. More detailed schematics are shown
in Fig. 1, which consists of the following
modules:
Object Detector is used to detect the bound-
ing box of nodes in scene graphs, which can
be formalized as follows:

o = (b,c) = ([x,y,w,h],c) = ObjDet(I), (9)

where o means the nodes containing detected
object boxes b=[x,y,w,h] with classes c.
Regional Feature Extractor is used to ex-
tract regional features of object regions and union regions (c.f. Eq. 10). Specifically, the
visual encoder (denoted as Visenc) first extracts the image-level feature maps. Notably, in
this work, in addition to the traditional Faster-RCNN visual encoder [19] obtained from
closed-set training, we also introduce the visual encoder of CLIP [18] obtained from open-
set training (c.f. Fig. 1). Subsequently, we use the RoIAlign operator (denoted as Roialign)
[8] to align the feature maps f to obtain the initial object features v and union features u,
which can be formalized as follows: f = Visenc(I)

v = Roialign( f ,b)
u = Roialign( f ,bu),

(10)
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where bu denotes the union regions of subject and object entities.
Object Refined Model is used to refine the object and union features to conclude the relation
features. Specifically, it consists of the following two submoudles:
i) Object Context Encoder. Similar to the Faster-RCNN framework [19], we apply two MLP
modules to encode object context. The object features encoded can be formalized as follows:

h = MLP(v). (11)

ii) Relation Context Encoder. The refined object features can be obtained using the rela-
tion context encoder (denoted as RCenc, e.g., Motifs [28] and VCTree [24]). This encoder
requires inputting bounding boxes o and object features, which can be formalized as follows:

f̃ = RCenc(h,o). (12)

Next, we use two MLP modules to encode the union features. Subsequently, the union
spatial encoder (denoted as USenc), containing two convolutional layers [24, 25], is applied
to obtain spatial union features for paired object bounding boxes (bs,bo). These spatial union
features are then fused with the encoded union features to obtain the refined union features,
which can be formalized as follows:

fu = MLP(u)+USenc(bs,bo). (13)

As described in the main paper, the final relation features are formalized as follows:

fr = [ f̃s ⊕ f̃o]◦ fu. (14)

4 Efficient Discrete Triplet Prompt (EDTP)
As described in the main paper, the DTP faces a significant challenge of high computational
complexity (O(Np×|R|)) as it requires sampling all triplets to establish the prompts. To
mitigate the overburden on GPU memory, we optimize the engineering implementation by
obtaining text embeddings for the triplet prompt before training. We refer to this process as
the “offline process", and the DTP method optimized with this approach is denoted as EDTP.
During the offline process, we use the text encoder to obtain text embeddings for all possible
triplet prompts and store them for future use. During training, we obtain triplet word tokens
for all object pairs and directly retrieve the corresponding triplet text embeddings from the
pre-stored triplet text embeddings. Although this approach effectively solves the memory
constraint issue, it still incurs significant computation and inference time. In addition to the
extra overhead for downloading text embeddings and transferring them to the GPU memory,
the EDTP must perform matrix multiplication between the text embeddings and visual em-
beddings for each triplet. Consequently, the computational complexity remains proportional
to the large number of triplets processed.

5 Design Details for HP

5.1 Design Details for Informative Prompt
As mentioned in the main paper, HP has high flexibility to select any of the three basic
prompts for utilization in HP. However, due to the inefficient computational efficiency of
DTP, we limit our consideration to RP and CTP.
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Algorithm 1 Pseudocode of Multi-Modal Contrastive Loss Function of Informative Prompts
in a PyTorch-like style.

def ip_loss(t, f, t_ip, tau)
# t: normalized text embeddings of triplets
# f: normalized relation embeddings
# t_ip: normalized text embeddings of informative prompts
# tau: temperature coefficient
# textual and visual matched cosine similarities
logits_text_i = mm(t_ip, t.T) * exp(tau)
logits_text_j = mm(t, t_ip.T) * exp(tau)
logits_vis_i = mm(t_ip, f.T) * exp(tau)
logits_vis_j = mm(f, t_ip.T) * exp(tau)
# symmetric contrastive loss function
labels = arange(t_ip.shape[0])
l_t_i = CELoss(logits_text_i, labels, axis=0)
l_t_j = CELoss(logits_text_j, labels, axis=0)
l_v_i = CELoss(logits_vis_i, labels, axis=0)
l_v_j = CELoss(logits_vis_j, labels, axis=0)
loss = (l_t_i + l_t_j + l_v_i + l_v_j) / 4
return loss

mm: matrix multiplication; exp: exponential function; arange: returns a tensor of equally spaced values within a
given range; CELoss: cross-entropy loss function.

Subsequently, we will discuss which of RP and CTP is more suitable for use in HP.
CTP introduces learnable variables to capture object information in comparison to RP. This
endows it with two distinct advantages: Firstly, learnable parameters allow the model to
capture information not only from the visual modality but also from the textual modality. The
acquisition of multimodal information enables it to more effectively learn informative SGG.
To be more specific, consider FIP as an example. As depicted in Eq. 15, we conclude two-
modality similarities: zr and z̃r, which are learned in the visual and textual modality spaces,
respectively. The textual modality knowledge comes from the triplet textual information.{

Visual : zr = S(t,er∈R+), t = G(Tfip)
Textual : z̃r = S(t, ttr∈R+), tt = G(Tdtpr∈R+

), (15)

where tt represents the text embeddings of the input foreground triplets. The two formulas
in Eq. 15 respectively indicate that the embeddings of the informative prompts need to be
aligned with the visual embeddings and the triplet textual embeddings. Therefore, FIP is
learned by incorporating information from both the visual modality space and the textual
modality space. Moreover, we employ the contrastive learning system [18] to maximize the
cosine similarities of matched pairs and minimize the cosine similarities of unmatched pairs.
The multi-modal contrastive loss function is as follows: lfip−v(er∈R+) =−log exp(zr/τ)

∑ j∈R+, j ̸=r exp(z j/τ)+exp(zr/τ)

lfip−t(er∈R+) =−log exp(z̃r/τ)
∑ j∈R+, j ̸=r exp(z̃ j/τ)+exp(z̃r/τ) .

(16)

In accordance with [18], we reverse the order of er∈R+ , t for zr, and ttr∈R+ , t for z̃r in
Eq. 15, then we get the symmetric loss functions (lfip−v, lfip−t). Ultimately, the objective
function of FIP is formalized as follows:

lfip = (lfip−v + lfip−t + lfip−v + lfip−t)/4. (17)

When computing liip, replace Tfip with Tiip, and restrict the training samples to the Rt
set. The pseudocode for the multi-modal contrastive loss is visible in the Algorithm. 1.
Subsequently, we validate our findings through experiments. As illustrated in Tab. 1, the
experiments indicate that: 1) the performance of HP-i-CTP surpasses HP-i-RP when aligning
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only a single visual modality. 2) The introduction of the textual modality information leads
to noticeable performance gains; HP-i-CTP (w/ V+T) outperforms HP-i-CTP (w/ V) by
0.4, 0.6, and 0.5 points in R@100, mR@100, and MR@100, respectively. 3) Additionally,
incorporating the multi-modal contrastive loss in HP can also enrich its learning with more
valuable information, resulting in enhanced performance on mR@K and MR@K.

Prompt Formats R@50/100 mR@50/@100 MR@50/100

HP-i-RP(w/ V) 65.4 / 67.2 18.0 / 19.5 41.7 / 43.4
HP-i-CTP(w/ V) 65.9 / 67.6 18.1 / 19.5 42.0 / 43.6
HP-i-CTP(w/ V+T) 65.9 / 67.6 18.7 / 20.1 42.3 / 43.9
HP-i-CTP(w/ V+T) + ensemble 64.8 / 67.4 18.7 / 21.3 41.8 / 44.4
HP(w/ V) 65.3 / 67.2 18.6 / 20.3 42.0 / 43.8
HP(w/ V+T) 65.7 / 67.4 19.1 / 20.6 42.4 / 44.0
HP(w/ V+T) + ensemble 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9

Table 1: Ablation study of different prompt
choices in HP-i and HP (on the PredCls task), w/
V indicates only learning the visual knowledge,
while V+T means learning both textual and vi-
sual knowledge. Ensemble means the ensemble
inference method.

Secondly, in contrast to RP, the CTP
allows the FIP, IIP, and MP in HP to have
independent and diverse sets of param-
eters for utilization in the ensemble in-
ference, which can aggregate the predic-
tions from individual prompts and further
increase the performance of HP. How-
ever, the fixed parameters in RP prevent
it from possessing such capability. As
shown in Tab. 1, after employing en-
semble inference, HP-i-CTP outperforms
HP-i-RP by 0.2, 1.8, and 1.0 points in
R@100, mR@100, and MR@100, respectively.

Based on the above observations, we have chosen CTP as the informative prompts (in-
cluding FIP and IIP) in the relevant experiments and exploited the multimodal constrative
loss function to learn them. Moreover, the selection of the BP format is discussed for differ-
ent tasks. Detailed explanations are provided in the experimental section of the main paper.

5.2 Design Details for CTP

Task Methods
PredCls

R@ 50 / 100 mR@ 50 / 100 MR@ 50 / 100

NPG (Novel)
CTP (class-specific) N/A / N/A N/A / N/A N/A / N/A
CTP (unified) 1.2 / 1.2 1.4 / 1.4 1.3 / 1.3

Infor-SGG
HP (class-specific) 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
HP (unified) 64.3 / 66.3 22.8 / 24.5 43.6 / 45.4

Table 2: Comparison of class-specific and
unified CTP in NPG and Infor-SGG (infor-
mative SGG) tasks.

When using CTP to learn novel predicates,
there are some design details that need to be
discussed. Due to the class-specific nature of
CTP, where each set of learnable parameters
is related to one predicate class seen in train-
ing, it is not applicable to the NPG task since
novel classes are not given during the training
process. To reduce this restriction, we include the same learnable parameters for all predicate
classes as in [31]. Its formula is as follows:

T = {[V s,RELi,V o]}0≤i<|R|, (18)

where V s and V o denote the unified prompt that are the same vectors for any predicate class.
As shown in Tab. 2, unified CTP is able to better predict novel classes in NPG. Therefore, in
the NPG task experiments with CTP, we resort to using unified CTP.

Moreover, under the condition of sufficient training data, e.g., in the conventional in-
formative SGG task, we compare the performance of both class-specific and unified CTP
combined with the HP method. As shown in Tab. 2, we observe that the mR@K and MR@K
performance of class-specific CTP are superior to that of unified CTP. This is likely attributed
to the strength of class-specific parameters in learning multimodal knowledge, which proves
advantageous for decision-making in different categories. Therefore, we prioritize class-
specific CTP in the informative SGG task due to its enhanced performance.

Citation
Citation
{Zhou, Yang, Loy, and Liu} 2022



8 ZHU, ET AL.: HIERARCHICAL PROMPT LEARNING FOR SGG

Models PredCls SGCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

Motifs [28] CVPR ’18 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.8 / 37.2 6.8 / 7.9 19.8 / 22.6
+HP-i 64.8 / 67.4 18.7 / 21.3 41.8 / 44.4 40.0 / 40.7 11.1 / 11.8 25.6 / 26.3 32.9 / 37.4 8.0 / 9.3 20.5 / 23.4
+HP 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9 39.3 / 40.2 13.5 / 14.3 26.4 / 27.3 31.9 / 36.3 8.9 / 10.5 20.4 / 23.4

VCTree [24] CVPR ’19 65.4 / 67.2 16.7 / 18.2 41.1 / 42.7 46.7 / 47.6 11.8 / 12.5 29.3 / 30.1 31.9 / 36.2 7.4 / 8.7 19.7 / 22.5
+HP-i 65.1 / 66.9 20.4 / 22.1 42.8 / 44.5 45.7 / 46.8 13.6 / 14.6 29.7 / 30.7 31.9 / 36.2 7.9 / 9.6 19.9 / 22.9
+HP 63.3 / 65.2 23.8 / 25.7 43.6 / 45.5 46.2 / 47.2 14.3 / 15.7 30.3 / 31.5 30.8 / 35.1 9.2 / 10.8 20.0 / 23.0

Transformer [25] CVPR ’20 65.6 / 67.3 16.3 / 17.3 41.0 / 42.3 40.2 / 41.0 10.1 / 10.7 25.2 / 25.9 33.0 / 37.4 8.1 / 9.6 20.6 / 23.5
+HP-i 65.6 / 67.4 19.8 / 21.4 42.7 / 44.4 40.0 / 40.9 11.0 / 11.6 25.5 / 26.3 32.2 / 36.9 8.4 / 10.1 20.3 / 23.5
+HP 64.0 / 65.9 25.3 / 27.0 44.7 / 46.5 39.3 / 40.1 14.5 / 15.4 26.9 / 27.8 31.7 / 36.1 9.2 / 10.7 20.5 / 23.4

GPSNet [15] CVPR ’20 ⋆ 65.0 / 66.9 14.9 / 16.0 40.0 / 41.5 38.2 / 39.2 8.8 / 9.3 23.5 / 24.3 31.5 / 34.0 7.3 / 8.3 19.4 / 21.2
+HP-i 65.8 / 67.5 20.5 / 21.8 43.2 / 44.7 37.9 / 39.0 10.7 / 11.3 24.3 / 25.2 31.3 / 33.9 8.9 / 10.3 20.1 / 22.1
+HP 61.7 / 63.8 24.3 / 27.1 43.0 / 45.5 36.3 / 37.6 13.1 / 14.3 24.7 / 26.0 28.6 / 30.5 10.4 / 12.0 19.5 / 21.3

SHL [5] CVPR ’22 ⋆ 65.1 / 66.9 16.0 / 17.3 40.6 / 42.1 39.7 / 40.5 9.6 / 10.2 24.7 / 25.4 32.2 / 36.7 7.3 / 8.6 19.8 / 22.7
+HP-i 64.9 / 66.7 20.1 / 22.5 42.5 / 44.6 39.0 / 39.7 11.6 / 12.3 25.3 / 26.0 32.5 / 36.9 7.9 / 9.3 20.2 / 23.1
+HP 62.9 / 64.7 25.0 / 27.1 44.0 / 45.9 38.7 / 39.6 12.7 / 13.6 25.7 / 26.6 29.9 / 34.3 9.9 / 12.0 19.9 / 23.2

Table 3: Comprehensive performance comparison of HP with different types of plain base-
line models on VG. ⋆ means the results are reproduced following the open-source codes.
The top-performing methods across all settings are underlined.

Models PredCls SGCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

Motifs 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.8 / 37.2 6.8 / 7.9 19.8 / 22.6

Rwt [2, 30] CVPR ’19 53.2 / 55.5 33.7 / 36.1 43.5 / 45.8 32.1 / 33.4 17.7 / 19.1 24.9 / 26.3 25.1 / 28.2 13.3 / 15.4 19.2 / 21.8
Rwt + HP 53.3 / 55.4 37.3 / 39.3 45.3 / 47.4 33.4 / 34.4 21.6 / 22.8 27.5 / 28.6 25.9 / 30.0 15.4 / 18.2 20.7 / 24.1

Rsp [12]∗ CVPR ’21 64.9 / 66.7 19.9 / 21.5 42.4 / 44.1 38.7 / 39.5 10.4 / 11.0 24.6 / 25.3 31.8 / 36.2 8.5 / 10.2 20.2 / 23.2
Rsp + HP 62.1 / 64.2 24.0 / 25.8 43.1 / 45.0 36.9 / 37.9 13.9 / 14.8 25.4 / 26.4 30.3 / 34.7 10.0 / 11.8 20.2 / 23.3

GCL [5] CVPR ’22 42.7 / 44.4 36.1 / 38.2 39.4 / 41.3 26.1 / 27.1 20.8 / 21.8 23.5 / 24.5 18.4 / 22.0 16.8 / 19.3 17.6 / 20.7
GCL + HP 50.4 / 52.5 34.5 / 37.0 42.5 / 44.8 26.8 / 27.8 22.0 / 23.1 24.4 / 25.5 21.3 / 24.9 16.3 / 18.8 18.8 / 21.9

Cacao [27]∗ ICCV ’23 34.5 / 35.7 35.7 / 38.4 35.1 / 37.1 24.5 / 25.1 19.1 / 20.4 21.8 / 22.8 22.3 / 26.6 12.2 / 14.8 17.3 / 20.7
Cacao + HP 43.3 / 49.5 31.5 / 37.8 37.4 / 43.7 32.3 / 34.3 19.3 / 21.8 25.8 / 28.1 22.0 / 26.3 12.5 / 15.2 17.3 / 20.8

Table 4: Comprehensive performance comparison of HP with different types of debiasing
baseline models on VG. ⋆ means the results are reproduced following the open-source codes.
6 Additional Experiments of HP

6.1 Additional Baselines

To better evaluate the effectiveness of our proposed HP on informative SGG, we comprehen-
sively compare them on two types of baselines. Firstly, for plain baseline models without
employing debiasing methods, we report the performance of the proposed HP using four
different types of relation encoders. These encoders include the Motifs [28] model, which
employs LSTM architecture; the VCTree [24] constructed by tree-based structure; the Tran-
former [25] and SHL [4] models, which both incorporate transformer-based modules; and
the GPSNet model [15] which utilizes the message passing module. Surprisingly, as shown
in Tab. 3, our proposed HP-i and HP achieve better performance on almost all mR@K and
MR@K than the baselines and maintain pretty good performance in R@K across all three
tasks. Moreover, HP performs better than HP-i on mR@K and MR@K with various plain
baseline models. These results demonstrate that HP is a plug-and-play, general method ca-
pable of enhancing the performance of informative predicates on plain baseline models.

Secondly, for debiasing baseline models, we report the performance of the proposed HP
using four different types of debiasing models. These methods include the Cacao [27], which
enhances the SGG dataset by generating more tail samples; the GCL method, which employs
a set of classifiers specialized in learning different classes; the data resampling method (de-
noted as Rsp), which is a bi-level data resampling strategy [12] to balance the biased data
distribution; and the reweighting method (denoted as Rwt), which amplifies loss weights for
tail classes and diminishes loss weights for head classes. As shown in Tab. 4, we make two
observations: 1) With regard to Cacao and GCL, their over-emphasis on tail classes at the
expense of head classes significantly degrades their R@K despite slightly higher mR@K

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Tang, Zhang, Wu, Luo, and Liu} 2019

Citation
Citation
{Tang, Niu, Huang, Shi, and Zhang} 2020

Citation
Citation
{Lin, Ding, Zeng, and Tao} 2020

Citation
Citation
{Dong, Gan, Song, Wu, Cheng, and Nie} 2022{}

Citation
Citation
{Cui, Jia, Lin, Song, and Belongie} 2019

Citation
Citation
{Zheng, Lyu, Gao, Dai, and Song} 2023

Citation
Citation
{Li, Zhang, Wan, and He} 2021

Citation
Citation
{Dong, Gan, Song, Wu, Cheng, and Nie} 2022{}

Citation
Citation
{Yu, Li, Wu, Tang, Ji, and Zhuang} 2023

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Tang, Zhang, Wu, Luo, and Liu} 2019

Citation
Citation
{Tang, Niu, Huang, Shi, and Zhang} 2020

Citation
Citation
{Dong, Gan, Song, Wu, Cheng, and Nie} 2022{}

Citation
Citation
{Lin, Ding, Zeng, and Tao} 2020

Citation
Citation
{Yu, Li, Wu, Tang, Ji, and Zhuang} 2023

Citation
Citation
{Li, Zhang, Wan, and He} 2021



ZHU, ET AL.: HIERARCHICAL PROMPT LEARNING FOR SGG 9

Models Visenc
PredCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

RP RX101-FPN 65.7 / 67.4 16.7 / 18.0 41.2 / 42.7 32.8 / 37.1 7.6 / 9.0 20.2 / 23.1
CLIP-RN101 61.3 / 65.8 14.4 / 17.6 37.9 / 41.7 31.7 / 36.0 7.3 / 8.7 19.5 / 22.4

CTP RX101-FPN 65.7 / 67.4 17.2 / 18.4 41.5 / 42.9 32.9 / 37.5 7.7 / 9.1 20.3 / 23.3
CLIP-RN101 65.1 / 67.0 17.6 / 19.1 41.4 / 43.1 31.6 / 36.0 7.5 / 9.0 19.6 / 22.5

HP RX101-FPN 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9 31.9 / 36.3 8.9 / 10.5 20.4 / 23.4
CLIP-RN101 63.7 / 65.6 24.4 / 26.3 44.1 / 46.0 32.2 / 35.6 9.4 / 10.9 20.8 / 23.3

Table 5: Comprehensive performance comparison of various visual encoders under the in-
formative predicate learning task on VG. The baseline model is the Motifs model.

Split Models Visenc
PredCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

Base

RP RX101-FPN 64.5 / 66.4 14.6 / 15.8 39.6 / 41.1 31.9 / 36.2 6.4 / 7.5 19.2 / 21.8
CLIP-RN101 63.5 / 65.5 16.9 / 18.3 40.2 / 41.9 30.6 / 35.0 7.0 / 8.3 18.8 / 21.7

CTP RX101-FPN 64.5 / 66.4 16.1 / 17.3 40.3 / 41.8 29.5 / 33.8 7.1 / 8.5 18.3 / 21.2
CLIP-RN101 63.6 / 65.7 16.7 / 18.1 40.2 / 41.9 30.7 / 34.9 7.1 / 8.4 18.9 / 21.7

HP RX101-FPN 63.9 / 65.9 19.4 / 21.1 41.7 / 43.5 31.6 / 35.9 7.8 / 9.2 19.7 / 22.5
CLIP-RN101 62.6 / 64.7 22.0 / 23.8 42.3 / 44.3 30.0 / 34.3 8.6 / 10.2 19.3 / 22.3

Novel

RP RX101-FPN 11.1 / 11.2 5.9 / 5.9 8.5 / 8.5 5.4 / 5.8 3.1 / 3.5 4.3 / 4.7
CLIP-RN101 9.9 / 10.0 10.6 / 10.7 10.3 / 10.4 5.6 / 5.9 3.2 / 3.3 4.4 / 4.6

CTP RX101-FPN 1.2 / 1.2 1.4 / 1.4 1.3 / 1.3 0.3 / 0.4 0.3 / 0.4 0.3 / 0.4
CLIP-RN101 1.1 / 1.2 1.6 / 1.8 1.4 / 1.5 0.1 / 0.2 0.3 / 0.4 0.2 / 0.3

HP RX101-FPN 13.4 / 13.4 7.9 / 7.9 10.6 / 10.6 6.9 / 7.7 5.5 / 6.3 6.2 / 7.0
CLIP-RN101 16.8 / 17.1 10.7 / 10.9 13.8 / 14.0 7.9 / 8.9 5.6 / 6.4 6.8 / 7.7

HM

RP RX101-FPN 18.9 / 19.1 8.4 / 8.6 14.0 / 14.1 9.3 / 10.0 4.2 / 4.8 7.0 / 7.7
CLIP-RN101 17.1 / 17.4 13.0 / 13.5 16.4 / 16.7 9.5 / 10.1 4.4 / 4.7 7.1 / 7.6

CTP RX101-FPN 2.3 / 2.3 2.5 / 2.5 2.5 / 2.5 0.6 / 0.8 0.6 / 0.8 0.6 / 0.8
CLIP-RN101 2.2 / 2.4 2.9 / 3.3 2.7 / 2.9 0.2 / 0.4 0.6 / 0.8 0.4 / 0.6

HP RX101-FPN 22.1 / 22.3 11.2 / 11.5 16.9 / 17.1 11.3 / 12.7 6.5 / 7.5 9.4 / 10.7
CLIP-RN101 26.5 / 27.1 14.4 / 15.0 20.8 / 21.3 12.5 / 14.1 6.8 / 7.9 10.1 / 11.4

Table 6: Comprehensive performance comparison of various visual encoders under the novel
predicate generalization task on VG. The baseline model is the Motifs model.
performance (only on the PredCls task), thus losing precision in the prediction of common
predicates. However, by adding our HP, they preserve head-class performance; the loss on
R@K is less significant, while mR@K is also greatly improved over the Motifs baseline.
This shows that our method can greatly encourage the learning of foreground and tail-class
predicates while alleviating head-class degradation. 2) With respect to Rsp and Rwt, our HP
outperforms them on mR@K and MR@K across all three tasks. All these results demon-
strate the effectiveness of our method when combined with debiasing techniques.

In conclusion, our HP is applicable to various types of SGG baselines, highlighting its
strong transferability and generalizability. The extensive experimental results consistently
demonstrate the stable enhancement achieved by HP across these baselines, particularly in
informative predicate prediction. Furthermore, when integrated with debiasing methods, our
HP attains a new state-of-the-art performance on mR@K and MR@K in informative SGG.

6.2 Additional Visual Encoder

As discussed in Sec. 3, we introduce two visual encoders. The first is the visual backbone
from closed-set trained Faster R-CNN: RX101-FPN. The second is the visual encoder from
open-set trained CLIP: CLIP-RN101. The object context model of pre-trained Faster-RCNN
has a significant impact on the performance of SGCls mode, but this model is not available
with the CLIP visual encoder. Therefore, to ensure a relatively fair comparison with RX101-
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FPN, we omit the SGCls protocol. We conduct comparative experiments for these two visual
encoders under informative predicate learning and novel predicate generalization tasks.

Firstly, as shown in Tab. 5, different prompts on the two visual encoders achieve close
performance in terms of mR@K and MR@K metrics. Secondly, different prompts on CLIP-
RN101 consistently outperform RX101-FPN across almost all mR@K and MR@K metrics
in the novel split, as shown in Tab. 6. CLIP-RN101 also performs better on the HM met-
ric with various prompts. Based on these results, we draw two conclusions: 1) Under a
closed-set experimental condition where only base categories need to be predicted, both vi-
sual encoders perform similarly (c.f. Tab. 5). 2) Under an open-set experimental condition
where novel categories need to be predicted, the CLIP visual encoder yields better perfor-
mance in prompt learning (c.f. Tab. 6). Notably, we apply RX101-FPN as the visual encoder
in the main paper to ensure fair comparison with previous works [24, 25, 28].

Additionally, HP outperforms RP and CTP in terms of mR@K and MR@K performance
with both two visual encoders, which further demonstrates the effectiveness of HP.

6.3 Additional Method Comparison
In this subsection, we will conduct a comparative analysis to highlight the superiority of our
HP compared to comparators. These methods primarily include:

6.3.1 Gradient-adjusting Methods.

HP involves adjusting propagated gradients. We compare it against other gradient-adjusting
approaches, including EQL V1 and V2 [21, 22]. The differences between them include: 1)
Forms. EQL V1 and V2 [21, 22] adjust gradients by relying on the loss functions, whereas
HP adjusts gradients based on the gradient distribution as a prior and employs specialized
prompts to adjust the gradient ratios of foreground and tail classes. This makes HP a model-
level enhancement rather than a loss-level modification. Thus, these two types of methods are
different in form and not conflicting, allowing them to be combined for better performance.
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Figure 2: (a) Gradient ratio of positives to nega-
tives for foreground classes. (b) The average pre-
dicted probability for foreground classes. The x-
axis is the category index, arranged according to
the instance count of each category.

2) Adjustment strengths. EQL
V1 overlooks discouraging gradients
from background classes, and EQL V2
uses a function to calculate an adjust-
ing weight to balance positive and neg-
ative gradient ratios, with its adjust-
ment strength constrained by an upper
limit of this function. Consequently,
the adjustment strengths of both meth-
ods are relatively moderate. HP gains a
more significant boost in positive gradi-
ent ratios for foreground and tail classes
by eliminating discouraging gradients
from background and head classes, as
shown in Fig. 2 (a). Furthermore, as
shown in Fig. 2 (b), EQL V1 and EQL
V2 exhibit a relatively marginal improvement in the probability of foreground categories. In
contrast, in HP, FIP surpasses both methods in enhancing the predicted probabilities of fore-
ground categories. Moreover, IIP further increases the predicted probabilities of tail classes.
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3) Performance. HP outperforms both methods, as shown in Tab. 7. Specifically, HP
gains 4.0 points higher on mR@K and 1.3 points higher on MR@K than EQL V2. Addition-
ally, HP can be flexibly combined with the aforementioned methods to further enhance the
learning of foreground and tail categories. For example, as shown in Tab. 7, the performance
of mR@100 and MR@100 with HP+EQL V2 exceeds that of EQL V2 by 4.4 and 1.7 points,
respectively.

6.3.2 Background-foreground Balancing Learning Methods.

Method R@50/100 mR@50/100 MR@50/100

Baseline 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6
CTP(Focal Loss) 64.4 / 66.5 15.7 / 17.7 40.1 / 42.1
CTP(r = 0.25) 65.6 / 67.4 17.2 / 18.6 41.4 / 43.0
CTP(r = 0.50) 65.7 / 67.4 17.1 / 18.5 41.4 / 43.0
CTP(m = 2) 65.6 / 67.3 17.2 / 18.6 41.4 / 43.0
CTP(m = 4) 65.7 / 67.4 17.5 / 18.9 41.6 / 43.2
CTP (+FIP) 64.8 / 67.4 18.7 / 21.3 41.8 / 44.4
EQL V1 [21] 64.9 / 66.8 18.0 / 19.5 41.5 / 43.2
EQL V2 [22] 65.5 / 67.4 19.7 / 21.8 42.6 / 44.6
HP 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
HP + EQL V2 63.2 / 65.0 28.1 / 30.2 45.7 / 47.6

Table 7: Performance comparison of differ-
ent basic prompts on the NPG task.

FIP involves balancing learning between
background and foreground classes. To prove
the superiority of the FIP, we compare it with
some possible alternative approaches.

Firstly, we compare FIP with Focal Loss
[14], a classic method for addressing simi-
lar issues in object detection. As shown in
Tab. 7, incorporating Focal Loss into CTP
marginally improves mR@K but decreases
R@K. Consequently, combining SGG mod-
els with Focal Loss does not effectively ad-
dress the imbalance between background and
foreground. The possible reason for such results is that it still relies on passive adjustment
of the learning process through loss without actively tuning like our FIP.

Secondly, we introduce background triplet sampling in each training batch. Specifically,
we define the batch size of background triplets as B− and the sampling ratio as r for the
baseline model. We then randomly sample B− ∗ r background triplets in each batch. As
shown in Tab. 7, there are minimal changes observed in R@K and mR@K for CTP (r = 0.25)
and CTP (r = 0.50). FIP surpasses the background sampling methods on R@K and mR@K.

Thirdly, we augment the training batch with copies of foreground triplets. As depicted
in Tab. 7, we set the replication multiples m to either 2 or 4. It is observed that the R@K
remains largely unchanged, while the mR@K and MR@K are inferior compared to FIP.

The second and third comparisons demonstrate that simply augmenting foreground triplets
or removing background triplets does not effectively mitigate the background-foreground
class imbalance issue in SGG. In contrast, our proposed FIP approach integrates additional
positive learning gradients, enhancing the learning of foreground triplets and mitigating the
detrimental impact of background triplets. This presents FIP as a more effective optimization-
centric solution to the background-foreground unbalanced learning problem.

6.3.3 Multi-expert Model Methods.

There are certain similarities between our method and multi-expert models, such as GCL [5],
and a model variant of our method (denoted as HFC), which replaces the prompts in HP as
FC (fully connected layer). These models share a multi-expert model structure. Despite the
structural similarity, our approach exhibits superior traits that set it apart from these methods.

Compared to GCL, HP offers three advantages: 1) GCL is specifically designed for SGG
tasks, exhibiting overly strong task coupling and lacking the versatility to extend to other
tasks. In contrast, our HP can be easily applied to other related tasks (e.g., the long-tailed
classification discussed in Sec. 7. 2) GCL lacks novel predicate prediction capability, while
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Models PredCls SGCls SGDet

R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100 R@50 / 100 mR@50 / 100 MR@50 / 100

Motifs [28] 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.8 / 37.2 6.8 / 7.9 19.8 / 22.6
+HFC 62.1 / 64.3 23.2 / 25.4 42.7 / 44.9 38.3 / 39.3 13.3 / 14.2 25.8 / 26.8 32.4 / 36.8 7.9 / 9.3 20.2 / 23.1
+HP 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9 39.3 / 40.2 13.5 / 14.3 26.4 / 27.3 31.9 / 36.3 8.9 / 10.5 20.4 / 23.4
+ GCL [5] 42.7 / 44.4 36.1 / 38.2 39.4 / 41.3 26.1 / 27.1 20.8 / 21.8 23.5 / 24.5 18.4 / 22.0 16.8 / 19.3 17.6 / 20.7
+ GCL + HP 50.4 / 52.5 34.5 / 37.0 42.5 / 44.8 26.8 / 27.8 22.0 / 23.1 24.4 / 25.5 21.3 / 24.9 16.3 / 18.8 18.8 / 21.9

Table 8: Comprehensive performance comparison of different types of multi-expert model
methods in the informative SGG task on the VG dataset. The R@50/100, mR@50/100, and
MR@50/100 on PredCls, SGCls, and SGDet tasks are reported.

Method CIFAR-10-LT ↓ CIFAR-100-LT ↓

Baseline [7] 28.8 60.2
Rwt [2] 27.1 59.6
Focal Loss [14] 27.7 59.6
EQL V1 [21] 26.9 58.7
EQL V2 [22] 28.0 58.8

HP 23.0 56.1
HP+EQL V1 21.9 55.4

Table 9: Test set balanced error (averaged
over 5 trials) on long-tailed CIFAR-10/-100
with ResNet-32 [7] as backbone.

Method Head Tail All

Baseline [19] 25.05 23.96 24.17
Rwt [2] 23.81 22.84 23.02
Focal Loss [14] 22.40 21.81 21.93
EQL V1 [21] 21.97 23.03 22.84
EQL V2 [22] 25.41 24.52 24.69

HP 25.27 24.30 24.49
HP+EQL V2 25.54 24.55 24.75

Table 10: Comparison of different balanc-
ing learning methods in the object detec-
tion task on the VG dataset, the AP50 of
different splits is reported.

our HP can predict novel predicates in a zero-shot inference manner. 3) The model design
of GCL is excessively rigid, with high component coupling, impeding quick and seamless
transferability. On the contrary, HP boasts flexibility and strong transferability. We can
effortlessly integrate HP with GCL by substituting HC for GCL’s classifier, as illustrated
in Tab. 8, resulting in GCL+HP demonstrating significant performance improvements over
GCL on R@K and MR@K.

Compared to HFC, HP offers two advantages: 1) HFC lacks the capability for novel
predicate prediction, whereas HP possesses it. 2) HFC does not match our performance.
As indicated in Tab. 8, HP surpasses HFC on all three metrics across the three tasks. The
potential reason is that HP is a prompt-based learning method capable of leveraging informa-
tive textual modal knowledge obtained from large-scale language models. The integration of
information from different modalities may be advantageous for informative SGG [32]. How-
ever, HFC does not incorporate such textual modal knowledge through prompt learning.

7 Generalization of HP to Other Tasks
Our method can be applied not only to the SGG task but also to other tasks, including:

7.1 Long-tailed Classification
Experimental Setting. We perform experiments on long-tailed image classification datasets,
including CIFAR-10-LT [11] and CIFAR-100-LT [11], and the long-tailed data distribution
of them is shown in Fig. 3 (b)-(c). We report the test set balanced error (averaged over 5
trials). The category with the sample count ranking in the top 20% is designated as the head
classes for these two datasets. We use ResNet-32 [7] as the backbone model.
Experimental Results. We compare several commonly used methods for balanced classifi-
cation in Tab. 9 and draw two observations: 1) Among these approaches, HP yields the best
results on both long-tailed datasets. 2) Our method can be integrated with these approaches
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to further enhance performance in long-tailed classification. For example, the combination
of EQL V1+HP outperforms both HP and EQL V1 on both long-tailed datasets.

7.2 Long-tailed Detection
Experimental Setting. Furthermore, we apply our HP to the long-tailed detection task.
Notably, the object classes in VG exhibit a long-tail distribution, as illustrated in Fig. 3 (a).

(a)

(b)

(c)

Figure 3: Distribution of different long-tailed
datasets. The x-axis ticks are arranged in reverse
order according to the number of samples. (a) The
distribution of object instances in VG. (b) The dis-
tribution of classes in CIFAR-100-LT. (c). The
distribution of classes in CIFAR-10-LT.

Therefore, we conduct comparative ex-
periments on the VG detection split
to assess the performance of our HP
method in comparison to several com-
monly employed approaches for ad-
dressing long-tailed detection. To bet-
ter elucidate the performance improve-
ments in tail-class detection, we report
the AP50 for different class splits, in-
cluding head classes (sample size >
10K), tail classes (sample size ≤ 10K),
and all classes.
Experimental Results. As shown in
Tab. 10, three key observations can be
made: 1) Our HP significantly outper-
forms the baseline. 2) Our HP ranks
second only to EQL V2 and surpasses all other methods in all three splits. 3) Our HP can
be seamlessly integrated into other balanced learning methods for long-tailed detection. For
instance, the combination of HP and EQL V2 yields additional improvements, achieving the
best overall performance.

7.3 Zero-shot Relationship Retrieval
Experimental Setting. We employ the zero-shot recall, denoted as zs-R@K [25, 28], to
evaluate the performance of all models on unseen triplets during training.

Models
PredCls SGCls SGDet

zs-R@50 / 100 zs-R@50 / 100 zs-R@50 / 100
Dec [9] 13.6 / 16.5 3.2 / 4.8 2.9 / 4.0
PeNet [30] 17.2 / 20.9 5.4 / 6.5 2.3 / 3.6
Motifs [25, 28] 10.9 / 14.5 2.2 / 3.0 0.1 / 0.2
Motifs (TDE) [25] 14.4 / 18.2 3.4 / 4.5 2.3 / 2.9
Motifs (EMB) [20] 4.9 / - 1.3 / - 0.2 / -
Motifs (HP-i) 18.9 / 22.0 4.8 / 5.6 2.1 / 3.2
Motifs (HP) 19.1 / 21.9 4.9 / 5.9 2.2 / 3.5
VCTree [24, 25] 10.8 / 14.3 1.9 / 2.6 0.2 / 0.7
VCTree (TDE) [25] 14.3 / 17.6 3.2 / 4.0 2.6 / 3.2
VCTree (EMB) [20] 5.4 / - 1.9 / - 0.5 / -
VCTree (HP-i) 17.6 / 21.0 7.5 / 8.7 2.2 / 3.4
VCTree (HP) 18.9 / 22.0 6.2 / 7.6 2.2 / 3.3

Table 11: Comparison of different methods
under all three sub-tasks on the VG dataset.
Model-specific models are marked in gray.
Zero-shot Recall (zs-R@50/100) is reported.

Different from NPG, zero-shot relationship
retrieval involves predicting unseen com-
binations of triplets with seen predicates
[25, 28]. In this scenario, we compare
performance with other methods address-
ing zero-shot relationship retrieval, includ-
ing model-agnostic models TDE [25] and
EMB [20], as well as model-specific mod-
els PeNet [30] and Dec [9].
Experimental Results. We derive three ob-
servations from Tab. 11: 1) Our HP signif-
icantly outperforms baseline. 2) HP per-
forms better than other methods. On the
Motifs baseline [28], HP outperforms the
second-best model-agnostic method TDE by 15.3%, 31.1%, and 20.7% on PredCls, SG-
Cls, and SGDet, respectively. HP also achieves comparable or superior performance with
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Method
PredCls SGCls SGDet

mR@50/100 mR@50/100 mR@50/100

KERN [1] 10.1 / 12.5 5.0 / 6.3 2.2 / 4.1
TDE [25] 11.5 / 13.4 5.3 / 6.8 2.7 / 3.9
Motifs [28] 9.6 / 11.9 4.5 / 5.8 1.8 / 3.3
Motifs (Dec) [9] 13.4 / 15.1 6.5 / 8.2 3.6 / 5.0

Motifs (HP-i) 17.1 / 19.1 8.5 / 9.6 5.6 / 6.8

Table 12: Comparison of various methods for
relationship retrieval under the few-shot train-
ing data setting under all three sub-tasks.

Methods PredCls

R@100 mR@100 MR@100
HP 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
w / o BP 39.4 / 45.0 23.7 / 28.0 31.6 / 36.5
w / o FIP 64.4 / 66.2 20.4 / 22.1 42.4 / 44.2
w / o IIP 64.8 / 67.4 18.7 / 21.3 41.8 / 44.4
w / o FIP + IIP 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6

Table 13: Ablation study of each com-
ponent in HP.

the best model-specific model, PeNet. 3) The advantage of HP over HP-i on zero-shot re-
trieval is less apparent than in informative SGG, possibly due to the absence of tail group
predicates in unseen triplets, resulting in diminished effectiveness of IIP in HP, thus bringing
unchanged or decreased performance for HP.

7.4 Few-shot SGG Learning

Experimental Setting. Due to the limited training data in the tail group of SGG datasets,
few-shot learning is a crucial and practical problem for the SGG task. To evaluate the ef-
fectiveness of HP in this scenario, we conduct experiments using few-shot training data.
Specifically, we select K

′
images from each relation class to train the SGG models, with K

′

set to 10 in our study. It is important to note that in this task, the number of samples for each
foreground category is equal. As a result, IIP is not utilized for this task, and only FIP is
employed. Hence, we solely compare HP-i with other methods in this scenario.
Experimental Results. As depicted in Tab. 12, our approach outperforms the second-best
method (Motifs (Dec)) by 4.0, 1.4, and 1.8 points across three tasks in terms of mR@100.
This underscores the superior ability of HP to discriminate between different classes under
the conditions of few-shot training data.

8 Ablation Studies for HP

8.1 Effect of Different Prompts in HP

Firstly, we conduct ablation experiments on each prompt in HP as presented in Tab. 13. We
make two observations: 1) The effect of BP is significant. As evident in Row 1, the absence
of BP leads to a substantial decrease in R@K, underscoring its efficacy in mitigating false
negatives associated with background classes. 2) Both FIP and IIP are pivotal contributors
to the enhancement of mR@K and MR@K. The removal of either one detrimentally affects
overall performance. This directly validates the effectiveness of the FIP and IIP.

8.2 Different Pre-trained Language Models

We conduct experiments to evaluate the performance of different pre-trained language mod-
els in the HP-i. Specifically, we compare language models derived from CLIP [18] and BERT
[3]. The results, as presented in Tab. 14, lead to the following observations: Firstly, com-
pared to the baseline model, employing the prompt-based learning method with a language
model derived from either CLIP or BERT improves mR@K and MR@K. This suggests that
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Method R@50/100 mR@50/100 MR@50/100

Baseline [28] 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6

BERT [3] 65.3 / 67.1 16.8 / 18.2 41.1 / 42.7
CLIP (RN-101) [18] 65.7 / 67.4 17.2 / 18.4 41.5 / 42.9
CLIP (RN-50) [18] 65.6 / 67.4 17.0 / 18.4 41.3 / 42.9

Table 14: Comparison of different pre-trained lan-
guage models. The pre-trained language models
are employed in conjunction with the CTP.

ω
Predcls

R@50/100 mR@50/100 MR@50/100
Baseline 65.2 / 67.0 14.8 / 16.1 40.0 / 41.6
0.05 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
0.10 63.3 / 65.3 24.1 / 26.1 43.7 / 45.7
0.15 63.4 / 65.4 24.3 / 26.4 43.9 / 45.9

Table 15: Ablation study of different
ω values.

the prompt-based learning method is more apt for the SGG task, which facilitates the training
of robust SGG models capable of predicting more accurate scene graphs.

Secondly, we observe that the language model from CLIP is more effective. This may be
attributed to the training process of CLIP, which involves both visual and textual input data,
making it better suited for transferring to visual tasks. Thirdly, we conduct a comparison
between the language models from CLIP associated with the visual models RN-101 and
RN-50. We observe minimal accuracy differences between them and ultimately opt for RN-
101 due to its higher MR@50.

8.3 Hyperparameter Selection for HP

α1
SGCls

R@50/100 mR@50/100 MR@50/100
0.00 42.8 / 43.5 10.8 / 11.3 26.8 / 27.4
0.05 42.7 / 43.4 11.1 / 11.7 26.9 / 27.6
0.10 42.5 / 43.4 11.3 / 12.0 26.9 / 27.7
0.15 41.8 / 43.1 11.2 / 12.3 26.5 / 27.7
0.20 40.1 / 42.5 10.4 / 12.1 25.3 / 27.3
0.25 38.1 / 41.3 9.6 / 11.6 23.9 / 26.5

Table 16: Ablation study of different α1 val-
ues in HP-i.

In this section, we will use the HP with Mo-
tifs baseline on the VG dataset as an ex-
ample to demonstrate the strategy for tun-
ing the hyperparameters in HP. There are two
sets of hyperparameters in HP. The first set
is ω , which assigns weights to the various
prompts in HP when calculating the overall
loss function. As shown in Tab. 15, as ω in-
creases, R@K decreases, while mR@K ex-
hibits a slight increase. Ultimately, we choose
ω = 0.05, which corresponds to the highest
MR@K (achieving the best results on both
MR@50 and MR@100) and exhibits the least decline in R@K compared to the baseline.

α1 α2
SGCls

R@50/100 mR@50/100 MR@50/100
0.00 0.00 42.4 / 43.1 11.4 / 12.0 26.9 / 27.6
0.05 0.00 42.3 / 43.0 11.8 / 12.3 27.1 / 27.7
0.10 0.00 42.3 / 43.0 12.4 / 13.0 27.4 / 28.0
0.15 0.00 42.2 / 42.9 12.8 / 13.4 27.5 / 28.2
0.20 0.00 42.1 / 42.8 13.2 / 13.8 27.7 / 28.3
0.25 0.00 41.9 / 42.6 13.3 / 14.0 27.6 / 28.3
0.20 0.05 41.9 / 42.7 13.5 / 14.2 27.7 / 28.5
0.20 0.10 41.7 / 42.4 14.2 / 14.8 28.0 / 28.6
0.20 0.15 41.4 / 42.1 14.5 / 15.1 28.0 / 28.6

Table 17: Ablation study of different α1 and
α2 values in HP.

Next, we focus on α1 and α2 in ensem-
ble inference. We tune these hyperparame-
ters using the grid-search algorithm on the
validation set on the SGCls task. Firstly,
we adjust the hyperparameter α1 for the HP-
i method, as detailed in Tab. 16. It is ob-
served that an increase in α1 leads to an ini-
tial surge followed by a subsequent decline in
mR@K, while R@K consistently decreases.
Therefore, excessively increasing α1 is not
conducive to both mR@K and R@K. Hence,
we select α1 = 0.1 as the optimal choice,
achieving the best trade-off between R@K
and mR@K and yielding optimal results on MR@K. Secondly, for the HP method, we tune
both α1 and α2 parameters, as shown in Tab. 17. We observe that increasing α1 leads to a
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decrease in R@K and an increase in mR@K and MR@K. We choose α1 = 0.2 as it attains
the highest MR@K. Subsequently, while keeping α1 = 0.2 constant, we continue adjusting
α2. It is observed that an increase in α2 results in a decrease in R@K and an increase in
mR@K and MR@K. Ultimately, we choose α2 = 0.1, as it performs best on MR@K while
minimizing the decrease in R@K.

Following a similar parameter adjustment strategy employed for α1 and α2 in the SG-
Cls task, we extend the same approach to select parameters for both the PredCls and SGDet
tasks. We choose the same parameters for the Predcls task as the SGCls task. In the SGDet
task, we observe a heightened sensitivity to these two parameters. Ultimately, in the SGDet
task, we choose α1 = 0.0 for IP and α1 = 0.05 and α2 = 0.1 for HP. When combined with
Rwt methods [2], it will cause a substantial decrease in the performance of R@K metrics.
Therefore, to prevent further decline in the R@K metric, we do not use the ensemble infer-
ence method in the Rwt methods (i.e., α1 = 0.0 and α2 = 0.0).

8.4 Analysis of Hyperparameters in HP-i and HP

0.00 0.05 0.10 0.15 0.20 0.25

(a) R@100

42
43

HP-i
HP

0.00 0.05 0.10 0.15 0.20 0.25

(b) mR@100

12

14
HP-i
HP

0.00 0.05 0.10 0.15 0.20 0.25
(c) MR@100

27

28
HP-i
HP

Figure 4: Comparison of HP-i and HP un-
der different α1, the R@100, mR@100, and
MR@100 are reported. (SGCls task).

In this subsection, we conduct a perfor-
mance comparison between HP-i (w/o IIP)
and HP (w/ IIP) across different α1 param-
eter settings, as shown in Fig. 4. We derive
three observations: 1) When comparing the
baseline (i.e., α1 = 0 and α2 = 0), mR@K
for both HP-i and HP surpasses those of the
baseline. This validates the effectiveness of our proposed informative prompts in predicting
informative predicates, encompassing FIP and IIP. 2) The reduction in R@K for HP-i is more
pronounced than HP when increasing α1.

Methods α1 α2
SGCls

R@100 mR@100 HR@100 TR@100 M
Baseline - - 39.8 8.8 39.6 3.4 22.9
HP-i 0.20 0.00 40.6 12.5 40.4 8.5 25.5
HP 0.20 0.00 40.6 13.0 40.4 9.1 25.8
HP 0.30 0.00 40.3 13.8 40.2 9.5 26.0
HP 0.20 0.10 40.2 14.3 39.6 10.1 26.1

Table 18: Comparison of baseline, HP-i, and
HP under different α1 and α2 settings. HR@K
and TR@K are the mean recall of head and tail
classes, respectively. M represents the average
of all metrics in the corresponding row.

3) For HP-i, as α1 gradually increases,
mR@K initially improves but then de-
clines. In contrast, within the HP, an in-
crease in α1 exhibits a more stable and
significant enhancement in both mR@K
and MR@K. The explanation is that
IIP further enhances the learning of tail
classes compared to FIP by mitigating
the negative impact of discouraging gra-
dients from head classes, as discussed in
Sec. 2, thereby further strengthening the
performance of tail classes.

Furthermore, to further validate the superiority of our proposed methods, we conduct a
comprehensive comparison of baseline, HP-i, and HP performance under varied parameters
on the test set. From Tab. 18, it is evident that: 1) Both HP-i and HP outperform the baseline
on mR@100 and TR@100. This demonstrates the effectiveness of FIP and IIP. 2) Under the
same parameter conditions (i.e., α1 = 0.2), HP exhibits superior performance (i.e., higher
TR@100) for tail classes compared to HP-i; 3) The comparison of rows 4 and 5 reveals that
setting α2 = 0.1 more effectively improves TR@100 than setting α1 = 0.3. The observations
suggest that the inclusion of IIP enhances the learning of tail classes, corroborating conclu-
sions similar to those presented in Fig. 5. Therefore, based on these observations, both FIP
and IIP are indispensable in HP, jointly contributing to the learning of informative predicates.
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Figure 5: Absolute R@100 improvement compared with HP and HP-i on the VG dataset.
The Top-45 relationship categories are selected according to their frequency of occurrence.
The light green area is the head classes, and the light red area is the tail classes (SGCls task).

(a)

(b)

Figure 6: (a) Recall@100 of all predicate classes of Motifs, Motifs+HP-i, and Motifs+HP. (b)
Recall@100 of all predicate classes of Motifs, Motifs+Rwt, and Motifs+Rwt+HP. Predicates
are sorted in decreasing order of sample frequency (PredCls task).

8.5 Qualitative Results of Predicate Recall

For a more intuitive illustration of HP’s infotmative predicate recognition capability, we pro-
vide Recall@100 for each predicate in comparison to baselines, including our proposed HP-i
and HP, as depicted in Fig. 6 (a)-(b). From this statistical chart, we have several observations,
as follows: 1) Our HP-i (only using FIP) outperforms Motifs on most foreground predicates,
illustrating the effectiveness of our FIP in learning foreground classes. Intuitively, FIP pro-
vides enhanced positive reinforcement learning gradients for foreground classes. 2) With the
incorporation of IIP, HP significantly outperforms HP-i on most tail predicates. This suggests
that IIP further promotes the learning of tail classes by increasing the proportion of positive
gradients for tail classes. 3) Upon integration with Rwt [2], HP’s performance on most tail
predicates experiences further improvement. This demonstrates the robust scalability and
flexible transferability of our HP.

In conclusion, these results compellingly demonstrate that HP significantly enhances the
learning of informative predicates, enabling the model to effectively distinguish informative
predicates from uninformative ones.
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8.6 A More Granular Informative Prompt
In this study, we propose a hierarchical prompt learning method that organizes prompts into
three distinct levels of granularity. Each prompt is dedicated to specific, successively nar-
rowed class groups, aiming to facilitate the learning of informative predicates. At the latter
two levels, we employ prompts specifically tailored to enhance the learning of foreground
and tail classes, respectively. To further investigate the impact of increased granularity, we
introduce the fourth informative prompt, referred to as a More Granular Informative Prompt
(MGIP). In this analysis, we subdivide the latter 50% of the tail group into a smaller sub-
group and assign MGIP to train on these samples. Both training and prediction follow the
same approach as with the FIP and IIP.

Methods
PredCls

R@50/100 mR@50/100 MR@50/100
CTP 65.7 / 67.4 17.2 / 18.4 41.5 / 42.9
+FIP 64.8 / 67.4 18.7 / 21.3 41.8 / 44.4
+FIP+IIP 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
+FIP+IIP+MGIP 62.5 / 64.5 25.4 / 27.4 44.0 / 46.0

Table 19: Comparison of FIP, IIP, and
MGIP on the PredCls task.

The experimental results in Tab. 19 demon-
strate that the inclusion of the MGIP im-
proves the mR@K. However, the MR@K
shows a slight improvement (0.1 point on the
MR@100) compared to the IIP. In contrast,
IIP achieves more MR@K improvement (1.5
points on MR@100) compared to the FIP, in-
dicating a more significant decline in the R@K of MGIP than IIP. These results also suggest
that MGIP increases the performance loss in the head classes more than IIP. In conclusion,
while a more granular level of informativeness enhances the performance of informative
predicates, it also amplifies the magnitude of loss in the common predicates. We plan to
delve deeper into this aspect in our future work.

9 Further Clarification of HP

9.1 Characteristics of HP

Desired Properties FC RP DTP CTP SVRP HP
Ability to predict
novel predicates

% ! ! ! ! !

Plug-and-play method ! ! ! ! % !
Learnable vector for
stronger generalization

! % % ! ! !

Computationally efficient
and memory-efficient

! ! % ! % !

Ability to predict more
informative predicates

% % % % % !

Establish a new SOTA
for informative SGG

% % % % % !

Table 20: Comparison of various learning
models in SGG. Desired (undesired) proper-
ties are highlighted in green (red).

To more comprehensively demonstrate the
superiority of HP in tackling informative
and novel predicate learning in SGG, we
compare it with several alternative solu-
tions, including model-agnostic prompts, a
model-specific prompt SVRP [10] that pos-
sess the ability to transfer to novel classes,
and FC (fully connected layer) that lacks the
ability to transfer to novel classes. As illus-
trated in Tab. 20, HP exhibits all of the desir-
able characteristics, thereby establishing its
superiority in informative and novel predi-
cate learning tasks.

9.2 Detailed Algorithmic Procedure
For the convenience of readers’ understanding, we present a detailed pseudocode for HP in
Algorithm.2 1.

1Due to space constraints, it appears in the last page.
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Task Split Source Predicates Images Prompts

NPG
Training VG-50 base50 57723 Tbase50
Test-base VG-50 base50 26646 Tbase50
Test-novel VG-1800 novel50 1465 Tnovel50

Table 21: Dataset details for NPG task.

Task Methods PredCls
R@ 50 / 100 mR@ 50 / 100 MR@ 50 / 100

NPG (Novel) HP (w/o freqbias) 13.3 / 13.4 7.9 / 7.9 10.6 / 10.6
HP (w/ freqbias) NA / NA NA / NA NA / NA

Infor-SGG HP (w/o freqbias) 60.5 / 63.0 21.6 / 24.1 41.1 / 43.6
HP (w/ freqbias) 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9

Table 22: Influence of freqbias (frequency
bias) on NPG and informative SGG tasks.

base50

‘above’ ‘across’ ‘against’ ‘along’ ‘and’ ‘at’ ‘attached to’
‘between’ ‘carrying’ ‘covered in’ ‘covering’ ‘eating’ ‘flying in’ ‘for’

‘hanging from’ ‘has’ ‘holding’ ‘in’ ‘in front of’ ‘laying on’ ‘looking at’
‘made of’ ‘mounted on’ ‘near’ ‘of’ ‘on’ ‘on back of’ ‘over’
‘part of’ ‘playing’ ‘riding’ ‘says’ ‘sitting on’ ‘standing on’ ‘to’

‘walking in’ ‘walking on’ ‘watching’ ‘wearing’ ‘wears’ ‘with’ ‘painted on’
‘growing on’ ‘belonging to’ ‘parked on’ ‘lying on’ ‘using’ ‘behind’ ‘from’

‘under’

novel50

‘falling off’ ‘beneath’ ‘sitting on top’ ‘walking between’ ‘walking behind’ ‘at front of’ ‘closest to’
‘among’ ‘parked near’ ‘standing’ ‘cooking’ ‘sitting with’ ‘leaning against’ ‘walking towards’

‘standing behind’ ‘built into’ ‘held by’ ‘propped on’ ‘sitting next to’ ‘looking over’ ‘to left of’
‘mounted to’ ‘flying above’ ‘stacked on top of’ ‘leaning on’ ‘standing in front of’ ‘draped over’ ‘parked’
‘stopped at’ ‘operating’ ‘drinking from’ ‘standing in front’ ‘sitting’ ‘close to’ ‘sitting on top of’
‘hooked to’ ‘shining on’ ‘displayed on’ ‘giving’ ‘boarding’ ‘holding onto’ ‘right of’

‘turning’ ‘reaching for’ ‘touching’ ‘leaning up against’ ‘filled with’ ‘lifting’ ‘in center of’
‘looking down’

Table 23: Different predicate groups appearing in the NPG task.

10 Further Clarification of NPG task

10.1 More Details of NPG

The training set of NPG is directly sourced from VG [6]. It contains 50 predicate classes
and 150 object classes. The corresponding set of predicate categories for this dataset is
denoted as base50 as shown in Tab. 23. The novel evaluation set of NPG is derived from
VG-1800 [29]. This newly introduced zero-shot predicate test set comprises 1465 images.
We select the top 50 predicates based on frequency that are not included in the base set,
and their predicate categories are denoted as novel50 as presented in Tab. 23. Subsequently,
employing base50 and novel50 as predicate words, we construct the base prompt Tbase50 for
training and the novel prompt Tnovel50 for inference. For a more comprehensive summary,
please refer to Tab. 21.

10.2 Additional Experiments

In this section, we investigate the effects of different components on the performance of
NPG. These components include frequency bias [28] (denoted as freqbias), the ensemble
inference method (denoted as ensemble), and the reweighting method (denoted as Rwt) [2].
Frequency bias. We observe that frequency bias is not transferable to NPG since novel
predicates are not seen during training, and only the frequency of base predicates is accessi-
ble. However, when frequency statistics are available, as in formative SGG, which belongs
to the closed-vocabulary setting, frequency bias contributes to performance gains on all three
metrics, as demonstrated in Tab. 22. Therefore, we choose not to apply this method to the
NPG task but to utilize it in the informative SGG task.
Ensemble inference. As shown in Tab. 24, no informative prompts for novel classes are
available during the training stage of NPG, making ensemble inference inapplicable to NPG.
Ensemble inference proves effective when the training dataset is relatively clean, such as in
the informative SGG task as demonstrated in Tab. 24. Therefore, we opt not to employ this
method in the NPG task but employ it in the informative SGG task.
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Task Methods PredCls
R@ 50 / 100 mR@ 50 / 100 MR@ 50 / 100

NPG (novel) HP (w/o ensemble) 13.4 / 13.4 7.9 / 7.9 10.6 / 10.6
HP (w/ ensemble) NA / NA NA / NA NA / NA

Infor-SGG HP (w/o ensemble) 65.7 / 67.4 19.1 / 20.6 42.4 / 44.0
HP (w/ ensemble) 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9

Table 24: Influence of ensemble (ensem-
ble inference) on NPG and informative SGG
tasks.

Task Methods PredCls
R@ 50 / 100 mR@ 50 / 100 MR@ 50 / 100

NPG (Novel) HP (w/o Rwt) 13.3 / 13.4 7.9 / 7.9 10.6 / 10.6
HP (w/ Rwt) 15.9 / 16.1 11.6 / 11.8 13.8 / 14.0

Infor-SGG HP (w/o Rwt) 64.2 / 66.0 24.1 / 25.8 44.2 / 45.9
HP (w/ Rwt) 53.3 / 55.4 37.3 / 39.3 45.3 / 47.4

Table 25: Influence of Rwt on NPG and in-
formative SGG tasks.

Debiasing methods. As shown in Tab. 25, debiasing methods improve all three metrics in
NPG. The possible reason may be that Rwt makes an improvement in the performance of
base tail classes, leading to better performance in NPG for novel categories semantically
similar to these base tail classes. The application of debiasing methods in NPG is not the
primary focus of this work; therefore, these strategies have not been utilized in both tasks
in this work. However, based on the experimental results of Tab. 25, it appears that this
direction is worth further exploration. We look forward to inspiring other researchers to
explore this direction further.

11 Comparison Discussion of Basic Prompts

Prompt Complexity Learning Ability Transferability
RP Low Weak Strong
DTP High Weak Weak
CTP (class-specific) Low Strong Medium
CTP (unified) Low Medium Strong

Table 26: Comparison of characteristics for var-
ious basic prompts.

Based on the discussion in the preceding
sections, we compare the traits of basic
prompts in the SGG task, as illustrated in
the Tab. 26. We summarize the following
three points: 1) The high computational
complexity of DTP hampers its applica-
tion in the SGG task, while others with
lower computational complexity are considered more prioritized. 2) The learnable nature of
CTP enhances its learning ability, and class-specific CTP exhibits stronger learning ability
than unified CTP, leading to better performance in informative SGG tasks. 3) When trans-
ferring to novel predicate learning tasks, the class-specific trait reduces the transferability
of CTP, while both unified CTP and RP have high transferability. The difference between
unified CTP and RP lies in their learnable characteristics, with the former having a higher
dependency on data and the latter having a lower dependency. Therefore, RP performs better
on the NPG task without novel training data.

12 Qualitative Results
In Fig. 7 (a)-(c), we showcase examples predicted by the models Motifs [28], Motifs+HP. We
have the following observations: Firstly, in the closed-vocabulary experimental setting, Mo-
tifs+HP exhibits the ability to predict informative relations (e.g., “standing on" and “with")
rather than uninformative relations (e.g., “on" and “has"). This is evident in examples like
“man-standing on-track" and “man-watching-man" in the left and right illustrations of Fig. 7
(a). Secondly, in the NPG experimental setting, Motifs+HP demonstrates the capability to
predict unseen relations, e.g., “sitting next to" and “stacked on top of," which are not en-
countered during training. This is exemplified by instances like “woman sitting next to girl”
and “basket stacked on top of elephant” in the left and right illustrations of Fig. 7 (b).

In summary, our proposed HP approach proves to be highly effective in generating scene
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Figure 7: Qualitative comparisons between Motifs and our proposed Motifs+HP with regard
to R@50 on the PredCls task. Correctly predicted uninformative relationships that match
GT (i.e., Ground Truth) are depicted by solid green edges; wrongly predicted relationships
that do not match GT are shown as solid red edges; and correctly predicted informative rela-
tionships that match GT are depicted by solid blue edges. We also note logical relationships
that are not provided by GT yet are reasonable for prediction: logical novel relationships
not predicted are highlighted by dashed red edges, logical novel relationships predicted are
represented by solid purple edges. Due to space limitations, we exclude several detected
objects that are less significant from the graphs.

graphs that are both distinguishable and specific. These graphs capture rich information and
potentially reveal novel relationships, providing enhanced support for downstream tasks.
These outstanding qualities of the HP method contribute to the generation of more accurate
and contextually meaningful scene representations, underscoring its distinct advantages in
advancing related downstream applications.
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Algorithm 2 Pseudocode of HP in a PyTorch-like style.

# R: number of predicate classes; D: dimension of word embeddings;
# K: dimension of textual embeddings input to g; B_pos: number of foreground triplets
# B_tail: number of tail-class triplets; g: frozen pre-trained language model
# r: relation labels of input samples (N); r_t: word tokens of relation r (R)
# tau_bp, tau_fip, tau_iip: temperatures; omega: loss weight
# a1, a2: adjusting parameters in ensemble inference
# tri_t: word tokens of input triplets (N); DT: a flag indicating training phase or not
# f_vis: relation visual embeddings (N x K)

# word embeddings of learnable vector V_s: R x 1 x D
w_s = empty(R, 1, D)
# word embeddings of learnable vector V_o: R x 1 x D
w_o = empty(R, 1, D)
# word embeddings of relation text: R x 1 x D
w_r = TokenEmbedding(r_t)
# BP : R x 3 x D
bp = cat([w_s, w_r, w_o], dim=1)
# FIP : R x 3 x D
fip = cat([w_s, w_r, w_o], dim=1).deepcopy()
# IIP : R x 3 x D
iip = cat([w_s, w_r, w_o], dim=1).deepcopy()
# text embeddings of BP: N x K
t_bp= g(bp)
# text embeddings of FIP: N x K
t_fip = g(fip)
# text embeddings of IIP: N x K
t_iip = g(iip)

if DT # a flag representing training process
# pick foreground visual embeddings: B_pos x K
f_pos = GetPos(f_vis, r)
# pick tail-class visual embeddings: B_tail x K
f_tail = GetTail(f_vis, r)
# pick foreground text embeddings: B_pos x K
t_fip_pos = GetPos(t_fip, r)
# pick tail-class text embeddings: B_tail x K
t_iip_tail = GetTail(t_iip, r)

# text embeddings of foreground triplet: B_pos x K
t_pos = g(TokenEmbedding(GetPos(tri_t, r)))
# text embeddings of tail-class triplet: B_tail x K
t_tail = g(TokenEmbedding(GetTail(tri_t, r)))

# normalized visual or text embeddings: B_pos x K
t_pos = l2_normalize(t_pos, axis=1)
f_pos = l2_normalize(f_pos, axis=1)
f_tail = l2_normalize(f_tail, axis=1)
t_fip_pos = l2_normalize(t_fip_pos, axis=1)
t_iip_tail = l2_normalize(t_iip_tail, axis=1)

# get the symmetric contrastive loss for FIP, ip_loss are defined in Algorithm 1
loss_fip = ip_loss(t_pos, f_pos, t_fip_pos, tau_fip)
# get the symmetric contrastive loss for IIP
loss_iip = ip_loss(t_tail, f_tail, t_iip_tail, tau_iip)

# cross-entropy loss of BP
logits_bp = mm(f_vis, t_bp.T) * exp(tau_bp)
loss_bp = CELoss(logits_bp, r, axis=0)

# total loss
loss = loss_bp + omega * (loss_fip + loss_iip)

else:
# ensemble inference
logits_bp = mm(f_vis, t_bp.T) * exp(tau_bp)
logits_fip = mm(f_vis, t_fip.T) * exp(tau_fip)
logits_iip = mm(f_vis, t_iip.T) * exp(tau_iip)
# final logits
logits = logits_bp.deepcopy()
logits[:, 0] = logits_bp[:, 0]
logits[:, 1:] = logits_bp[:, 1:] + a1 * logits_fip[:, 1:] + a2 * logits_iip[:, 1:]

mm: matrix multiplication; cat: concatenation; empty: returns an uninitialized tensor.; TokenEmbedding:
returns the word embedding; GetPos: returns the foreground items; GetTail: returns the tail-class items;
arange: returns a tensor of equally spaced values within a given range; CELoss: cross-entropy loss function.


