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Supplementary Material

This supplementary material presents technical details, analyses, and experiments not included
in the main paper due to the space limit.

1 Technical Details

This section provides detailed information on the implementation details of the overall pipeline
and physically-based rendering (PBR) modeling in the main paper.

1.1 Implementation Details

Experimental details. We use AdamW optimizer with gradient clipping and the respective
learning rates of 1x 1073 for geometry and 1x 1073 for texture and optimize them simultane-
ously. We randomly sample 8 camera viewpoints for each iteration for rendering the novel
views. We conduct training with one NVIDIA A6000 GPU for about 30 minutes. We leverage
Open3D [23] to deal with SDF and point cloud representations.

Chamfer Distance. We measure Chamfer Distance to assess the quality of the mesh
reconstruction. Point clouds are normalized in scale and aligned to the ground-truth point
clouds by the iterative closest point (ICP) algorithm. 10K points are sampled for evaluating
each mesh.

Image-to-3D module. We require a learning-based feed-forward mesh prediction stage
employing the Image-to-3D module to obtain a preliminary coarse mesh and initial viewpoint
of the input image. The Image-to-3D module encompasses various techniques capable of
predicting a coarse mesh and an approximate viewpoint for the input image, e.g., [16, 22].

Segmentation module. MeTTA harnesses the multi-view diffusion model [11] fine-tuned
on large-scale synthetic datasets [4, 5], specifically designed for object rendering against a
white background. Achieving precise object segmentation is pivotal for effectively leveraging
the multi-view diffusion model, biased towards images with segmented white backgrounds.
To automate the process of obtaining high-quality segmentation results, we make use of the
latest segmentation models [7, 8]. While these models offer substantial automation, they still
require some level of user-interactive querying. In response, we have integrated a grounding
method [12] to obtain appropriate object detection as a query. Based on the detection results
as a user-given query, we subsequently employ a user-interactive segmentation method to
finalize the fine-grained segmentation results.

1.2 Texture Modeling

As explained in Section 3.5. of the main paper, we adopt physically-based rendering (PBR)
material modeling [13] to optimize neural texture optimization. By employing PBR material
modeling, we can achieve a realistic appearance for the reconstructed object and easily
integrate it with various graphics engines (e.g., Blender [3]) for practical applications. The
PBR material properties, denoted as kppg, consist of three fundamental elements: diffuse lobe
parameters k; € R3, the roughness and metalness term k,,,, € R2, and the normal variation
term k, € R3. Kk,,, consists of the roughness r and metalness term m. The first term, r,
is a parameter of GGX [20] normal distribution function and affects how the material’s
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surface reflects light. The second term, m, is used with diffuse value k; for computing the
specular term k; = (1 —m) -0.04 +m - k,;. We employ a tangent space normal map, denoted
as k,,, to capture intricate high-frequency lighting details on the surface. With a given scene
environment light [17], we can compute a basic rendering equation as a basic image-based
lighting model denoted by:

LG(P,C):/QLi(P,Ci)fe(P,Ci,C)(Ci'np)dci, (D)

where L is the rendered pixel color along the view direction ¢ of the 3D mesh surface point p.
L; is the incident light from the given off-the-shelf environment map, and € is a hemisphere
surrounding the surface with the altered surface normal ny,. Additionally, fo(p,¢;,c) is the
bidirectional reflectance distribution function (BRDF) modeled by PBR material modeling,
kg, Kk, and k,. We can split Eq. | into diffuse term L; and the specular term Ly as:

L(p,C) = Ld(p) +Ls(p,C),

Ly(p) =ka(1—m) [q Li(p,¢;)(¢;-mp)dc;, 2

Ls(p>c) = fg 4( bro

—Li p,C)C - )dci;
e ) (e mg) P i) (€ T

where D, F, and G indicate GGX (i.e., microfacet) distribution, Fresnel term, and statistical
light-blocking function, respectively. Following [1, 15], the split-sum approximation is used
to calculate hemisphere integration. By merging the pixel colors in the rendered image along
the view direction ¢, we obtain the rendered image x, representing the result of the rendering
process, denoted as:

x=R(6,¢), 3)

where R refers to the differentiable renderer [9] and 6 is the parameters of the MLP network
that predict PBR material properties, as depicted in the main paper. We employ xatlas [21]
for the generation of UV texture maps. As discussed in [1], the integration of sampled 2D
textures directly into real graphics engines leads to the emergence of texture seams.

2 Additional Quantitative Analysis

In this section, we provide further quantitative comparisons in both cross-domain and in-
domain scenarios. We evaluate cross-domain performance on a subset of the 3D-Front
dataset [6] and in-domain performance on a subset of the Pix3D dataset [ 18], both of which
contain ground-truth 3D meshes.

2.1 Cross-domain Comparison

In this section, we provide quantitative comparisons for cross-domain image to shape recon-
struction. We compare the same samples in Table. 2 in the main paper. For cross-domain
comparison, we train all methods, excluding our model MeTTA, on Pix3D [18]. Then, all
methods evaluate on 3D-Front [6]. MeTTA shows comparable geometry reconstruction with
previous methods, especially in the Chamfer Distance (See Table S1). It is noteworthy that
we do not employ any 3D mesh data in our test-time optimization process.
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Metric MGN [16] LIEN [22] InstPIFu[10] SSR[2] MeTTA (Ours)
Chamfer Distance | 0.1089 0.0975 0.0992 0.1948 0.0943
F-Score (%) T 27.32 34.29 31.65 16.51 29.96

Table S1: Cross-domain evaluation of feed-forward methods. We measure the Chamfer
Distance and F-Score between the predicted and ground-truth meshes. We conduct the
experiment to show the test-time adaptation ability of the unseen test dataset, 3D-Front [6].
Note that although we utilize the icp algorithm, the result of SSR [2] could have unexpected
errors due to its rotated and translated output geometry results.

Metric MGN [16] LIEN[22] InstPIFu[l10] SSR[2] MeTTA (Ours)
Chamfer Distance | 0.0494 0.0319 0.0825 0.1528 0.0612
F-Score (%) + 60.75 81.01 60.75 24.28 45.48

Table S2: In-domain evaluation of feed-forward methods. We measure Chamfer Distance
and F-Score between the predicted and ground-truth meshes. We conduct the experiment to
show the test-time adaptation ability of Pix3D [18], which is countered when training the
Image-to-3D module. Note that although we utilize the ICP algorithm, the result of SSR [2]
could have unexpected errors due to its rotated and translated output geometry results.

2.2 In-domain Comparison

We also evaluate our 3D object mesh reconstruction quality at the in-domain scenarios. Note
that our optimization process does not access the ground-truth 3D information, e.g., point
clouds, voxels, and meshes, while previous methods [2, 10, 16, 22] are directly trained
with Chamfer Distance with ground-truth meshes as supervision. Despite this, as shown
in Table S2, MeTTA shows comparable geometry reconstruction with others. It is worth
noticing that our method also reconstructs image-aligned geometry with realistic textures,
whereas others are limited in reconstructing only 3D geometry even trained with 3D shape
dataset [18].

3 Additional Qualitative Analysis

This section presents additional qualitative analyses due to space constraints in the main paper.
We provide visual results for both in-domain scenarios on the Pix3D dataset [18], as well as
the 3D-Front dataset [6] and real scenes.

3.1 In-domain Comparison

We assess the performance of our method on the Pix3D dataset, which aligns with our in-
domain distribution, resulting in favorable initial mesh predictions as shown in Figs. S1, S2,
S3 and S4. However, there are instances of erroneous predictions, which our approach
effectively rectifies, enhancing the realistic appearance of the reconstruction results. It is
important to note that changes in brightness and contrast may occur due to variations in
lighting intensity (i.e., different environment maps).
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Figure S1: Additional in-domain experiments about Pix3D [18]. We showcase the effec-
tiveness of our test-time adaptation in in-domain scenarios. Even in the in-domain settings, the
initial mesh prediction is inaccurate with no textures. With our test-time adaptation process,
we show that fine-grained geometry with realistic textures.
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Figure S2: Additional in-domain experiments about Pix3D [18]. We showcase the effec-
tiveness of our test-time adaptation in in-domain scenarios. Even in the in-domain settings, the
initial mesh prediction is inaccurate with no textures. With our test-time adaptation process,
we show that fine-grained geometry with realistic textures.
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Figure S3: Additional in-domain experiments about Pix3D [18]. We showcase the effec-
tiveness of our test-time adaptation in in-domain scenarios. Even in the in-domain settings, the
initial mesh prediction is inaccurate with no textures. With our test-time adaptation process,
we show that fine-grained geometry with realistic textures.
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Figure S4: Additional in-domain experiments about Pix3D [18]. We showcase the effec-
tiveness of our test-time adaptation in in-domain scenarios. Even in the in-domain settings, the
initial mesh prediction is inaccurate with no textures. With our test-time adaptation process,
we show that fine-grained geometry with realistic textures.
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Figure S5: Additional unseen real-world experiments. We show the additional unseen
real-world, i.e., cross-domain experiments with the dataset which we manually acquired.
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Figure S6: Additional unseen in-the-wild experiments. We show the additional in-the-wild,
i.e., cross-domain experiments with the dataset we acquired from the web.

3.2 Cross-domain Comparison

We evaluate the performance of an input image from previously unseen distributions through
a real scene dataset that we directly acquired and an in-the-wild dataset from the web. As
depicted in Figs. S5 and S6, real-world scenarios represent entirely new domains of images
that we have not encountered before. Consequently, initial mesh predictions struggle to reflect
the object shapes within the input image accurately. However, our test-time adaptation method
enables us to obtain fine-grained textured meshes that not only capture the geometry of the
input images but also incorporate their textures.

We demonstrate the effectiveness of our method on the 3D-Front [6] dataset, which
represents an unseen cross-domain distribution, as illustrated in Fig. S7. These samples fall
outside the training distribution and have not been encountered during training, so initial mesh
predictions may not align well with the input image objects. However, through our test-time
adaptation approach, we can successfully reconstruct object shapes and textures.


Citation
Citation
{Fu, Cai, Gao, Zhang, Wang, Li, Zeng, Sun, Jia, Zhao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021


10 YU-JIET AL.: METTA

11 8 22w
1@ XA
2RI A EFET E"E"

b1 VY 4 —m s max

al

#
3
a
=
25

i &
L &
{ &

Ref. Image Initial Mesh Input View Reconstructed Mesh (Novel Views)

Figure S7: Additional cross-domain experiments about 3D-Front [6]. We showcase the
effectiveness of our test-time adaptation in cross-domain scenarios. The 3D-Front dataset has
not been used in previous feed-forward methods [16, 22].
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Figure S8: Limitation of model dependen-
cies. The green square indicates object oc-
clusion in the input image, which disrupts
segmentation, leading to the disappearance
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Figure S9: Limitation of transparency or
reflection surface. The surface texture of
the input image is transparent and features
special material properties of the mesh ma-

terial. As a result, both the output geometry
and texture are degraded.

of the reconstruction mesh.

4 In-depth Analysis of Limitation and Discussion

We conduct in-depth analyses of limitations and discussions that we could not discuss due to
the length limitations of the main paper. Specifically, we present some failure cases of our
method and discuss the future direction of improvement.

4.1 Failure Cases

Model dependencies. Our model utilizes the initial mesh and viewpoint predictions from
the Image-to-3D module as the starting point for single-view image to 3D textured mesh
reconstruction. It implies that our single-view to 3D capabilities are constrained by the
capacity of the Image-to-3D module (e.g., it only functions for categories where viewpoint
prediction is feasible). Furthermore, we require images segmented to include only the object
of interest to utilize the multi-view diffusion model. Therefore, the quality of segmentation
directly impacts the quality of 3D reconstruction as shown in Fig. S8.

Transparency or reflection surface. Reconstructing 3D objects from single-view images
has been a long-standing challenge. In addition, estimating PBR (Physically-Based Render-
ing) materials from single-view images presents an ill-posed problem, as there is inherent
ambiguity between the diffuse component and lighting. In particular, the models currently in
use assume microfacet surfaces [20]. Therefore, for instances with special material properties
involving transparency or reflection, the texture optimization tends to degrade, resulting in
sub-optimal geometry updates as showin in Fig. SO.

4.2 Discussion

We believe that expanding the Image-to-
3D module into a more robust one capa-
ble of handling a larger class vocabulary
could overcome model dependency issues
despite the dependencies on the model in
use. Because our test-time adaptation stage
has the capability to category generalization
as shown in Fig. S10. Additionally, address-

PEW = wn ol B oie

>

Ref. Image 0 100 300 1000 1500

Figure S10: Possibility of category extension.
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ing the degradation in reconstruction quality due to special reflection surfaces might be
achievable through further exploration and application of complex material modeling and
rendering equations in the future. Our research is practical in that it introduces a pipeline
capable of operating in previously unseen out-of-distribution scenarios, especially in real-
scene scenarios, which were not extensively considered in prior studies and can work for
various viewpoint conditions in real images, which is different from existing generative
prior methods [11, 14, 19]. We believe that our work can serve as a stepping stone for the
advancement of single-view to 3D reconstruction methods that operate effectively in real
scenarios.
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