
YU-JI ET AL.: METTA 1

MeTTA: Single-View to 3D Textured Mesh
Reconstruction with Test-Time Adaptation

Kim Yu-Ji1

ugkim@postech.ac.kr

Hyunwoo Ha2

hyunwooha@postech.ac.kr

Kim Youwang2

youwang.kim@postech.ac.kr

Jaeheung Surh3

jh.surh@bucketplace.net

Hyowon Ha3,†

hyowon.ha@bucketplace.net

Tae-Hyun Oh1,2,4,†

taehyun@postech.ac.kr

1 Grad. School of AI
POSTECH, South Korea

2 Dept. of Electrical Engineering
POSTECH, South Korea

3 Bucketplace, Co., Ltd., South Korea
4 Institute for Convergence
Research and Education
in Advanced Technology
Yonsei University, South Korea

Abstract

Reconstructing 3D from a single view image is a long-standing challenge. One of
the popular approaches to tackle this problem is learning-based methods, but dealing
with the test cases unfamiliar with training data (Out-of-distribution; OoD) introduces
an additional challenge. To adapt for unseen samples in test time, we propose MeTTA,
a test-time adaptation (TTA) exploiting generative prior. We design joint optimization
of 3D geometry, appearance, and pose to handle OoD cases with only a single view
image. However, the alignment between the reference image and the 3D shape via the
estimated viewpoint could be erroneous, which leads to ambiguity. To address this am-
biguity, we carefully design learnable virtual cameras and their self-calibration. In our
experiments, we demonstrate that MeTTA effectively deals with OoD scenarios at fail-
ure cases of existing learning-based 3D reconstruction models and enables obtaining a
realistic appearance with physically based rendering (PBR) textures.

1 Introduction
Understanding 3D scenes and objects from a single-view image is a long-standing funda-
mental challenge in computer vision [26]. It becomes particularly crucial in robotics for
machine perception, extended reality systems for AR/VR, and virtual communication. They
need the ability to comprehend and interact with the real 3D world. Moreover, representing
real 3D scenes requires not only geometric accuracy but also realistic and physically-based
properties, essential for creating lifelike and interactive virtual environments [3, 49].
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Train
(Pix3D)
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(Real)

Ref. Image Pred.�Mesh Ours

Figure 1: Distribution gap between train
and test. “Train” refers to a sample
on which the Image-to-3D is trained, and
“Test” is an in-the-wild sample we captured.

PBR�Recon. Relighting Material�Editing

Lighting

Figure 2: Practical applications in graph-
ics. “PBR Recon.” means reconstruction re-
sults with PBR textures by ours.

There have been growing efforts to understand holistic 3d scenes, e.g., layout, object
pose, and mesh, from a single-view image [4, 13, 23, 31, 50]. These methods operate effec-
tively by utilizing a learning-based feed-forward approach with reasonable coarse geometry
and viewpoint estimation when only given the single-view reference image. However, the
feed-forward methods have the inherent limitation that they cannot perform well on real-
world test images away from trained distribution. Those methods rely on training with {2D
image, 3D shape}-paired datasets [11, 43], which have narrow data distribution compared
to the tremendous diversity of real objects. It is infeasible to construct a large-scale dataset
that covers such diversity, considering the difficulty and labor-intensive process of real 3D
data acquisition. Thus, feed-forward methods trained on such a limited dataset can only
learn the narrow expressivity of 3D shapes, as shown in “Pred. Mesh” of Fig. 1. It hints the
vulnerability of such feed-forward models to out-of-distribution (OoD) cases.

To address this challenge, we propose MeTTA, a test-time adaptation (TTA) method
for 3D reconstruction by utilizing only a single reference view image. To compensate
for the limited information of single-view, we leverage a pre-trained multi-view generative
model [25] as a prior. Given a single-view image, we obtain initial mesh and viewpoint
predictions from the existing feed-forward model. We then design joint optimization of the
mesh, texture, and camera viewpoint to deal with OoD cases. However, alignments between
the reference image and the 3D mesh from the estimated viewpoint are not exactly matched,
which may lead to erroneous results. To mitigate this, we propose carefully designed learn-
able virtual cameras with the self-calibrating method to align the 2D pixel information with
the 3D shape by updating the initial guess of the viewpoint estimation.

In addition, we parameterize the texture map with physically based rendering (PBR)
parameters, including diffuse, specularity, and normal. This enables us to utilize our results
in off-the-shelf graphics tools, e.g., Blender [8]; thereby ours can be facilitated to editing
for relighting and material control as shown in Fig. 2. This is an underexplored feature in
previous holistic 3D scene understanding researches [4, 13, 23, 31, 50] that predominantly
focus on shapes and poses of objects, where we extend to output material property, texture,
and mesh complying with input reference image.

Our key contributions are summarized as follows:

• We propose MeTTA, which closes the domain gap between training and test time by jointly
updating mesh, texture, and viewpoint with the aid of the generative model prior.
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• We design viewpoint self-calibration and textured mesh reconstruction using only a single
view reference image.

• We achieve high-fidelity geometry along with a realistic appearance with physically based
rendering (PBR) textures, which can be compatible with real graphics engines.

2 Related Work

Our task is related to the feed-forward reconstruction methods at single-view and the iterative
test-time adaptation aided by a generative prior. We briefly review these lines of work.

Feed-forward reconstruction methods. This task aims to reconstruct 3D mesh from a
single-view image captured in a real-world environment [48, 52]. A line of work [13, 23,
31, 47, 50] have proposed learning-based models that reconstruct image-aligned 3D meshes
and poses of objects from a single 2D image. While they could reconstruct the geometry of
objects of given single-view image in an feed-forward manners, they are vulnerable to out-
of-distribution (OoD) scenarios beyond the training dataset. The out-of-distribution cases
for this task are common since the intricacy and the diversity of object shapes in a real-
world environment are too complicated to be learned from the limited scale and diversities of
existing {2D image, 3D shape}-aligned and -paired datasets [7, 11, 21, 43]. Moreover, these
methods could not represent the texture. A recent work [4] has explored the reconstruction of
3D mesh and texture from a single image. However, their feed-forward estimation of shape
and texture also could not generalize to real-world cases. Also, the model only estimates the
RGB color and does not model the physically based rendering (PBR) characteristics, which
may limit the realism of the reconstructed texture.

Iterative reconstruction methods using generative priors. Recent advances in the field
of 2D generative models [1, 2, 10, 32, 35, 36, 38, 39] have shown remarkable capabilities
as the prior for 2D inverse problems [5, 6, 15, 41]. For our task of single-view 3D textured
mesh reconstruction, prior knowledge about 3D object geometry and textures is mandatory
to embody a test-time adaptability for OoD cases. However, directly constructing a 3D object
geometry or appearance prior is challenging, considering its unmeasured diversity.

A seminal work, DreamFusion [33] unlocked the capabilities of a pre-trained text-to-
image diffusion model and proposed the Score-Distillation Sampling (SDS), which acts as a
2D generative prior for the 3D generation task [3, 14, 22, 45]. We exploit the idea of using a
pre-trained generative model as a prior for 3D tasks. Specifically, we propose to use a multi-
view diffusion model [25] as a generative prior to mitigate the test-time distribution shift of
the 3D shape, texture and poses. Additionally, recently proposed feed-forward reconstruction
methods with generative priors [24, 46] also cannot model the realistic PBR properties.

3 Method

We first provide the overall MeTTA pipeline in Sec. 3.1. Following that, we explain how we
obtain the coarse object geometry in Sec. 3.2 and align the virtual camera to match with the
2D single-view image in Sec. 3.3. We describe our test-time adaptation (TTA) process for
3D reconstruction in Sec. 3.4 and explain the details of texture representation in Sec. 3.5.
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Figure 3: Overview of MeTTA. We propose a test-time adaptation pipeline to reconstruct a
3D mesh with PBR texture from a single-view image. “Ref. Image” refers to the reference
input image. “Seg. Image” refers to the object-segmented image from “Ref. Image”.
Ref.Image Ref.Viewpoint Canonical�Viewpoint

Ours
w/o�

Initial�Mesh
w/o�

Initial�Viewpoint

Figure 4: Ablation studies. To validate our
pipeline design, we perform ablation studies
where the initial mesh or viewpoint predic-
tion is absent. In the case of a missing ini-
tial mesh, we initialize our 3D space with el-
lipsoid. Canonical viewpoint means that the
azimuth and elevation angles are 0◦.

Elevation�𝜽!"# Azimuth�𝝓!"# Radius�𝒓!"#

Figure 5: Learnable virtual camera. The
reference image is taken with viewpoint
(θref,φref,rref), which we estimate and opti-
mize. Green dot means predicted viewpoint
given single-view image. Blue dot means
canonical viewpoint with both elevation and
azimuth angles are 0◦.

3.1 Overall Pipeline
When provided with a single-view reference image during test time, we employ a feed-
forward reconstruction method to obtain initial coarse shape and viewpoint predictions in the
first stage (blue box) of Fig. 3. We update coarse geometry to fine-grained shape with realis-
tic textures and viewpoints aligned with a 2D image in the second stage (green box) of Fig. 3.
We utilize a multi-view diffusion model [25] to guide the adaptation process through Score-
Distillation Sampling (SDS) loss [33]. We leverage the segmentation module [16, 17, 37] to
obtain a white-background object image. The initial estimated viewpoint has an ambiguity
between the 3D object and the reference image. To mitigate the vagueness, we assume a
learnable virtual camera space with its self-calibration which aids in finding well-aligned 2D
pixel to 3D space mapping, facilitating seamless adaptation. We demonstrate the effective-
ness of our design, composed of both the initial feed-forward mesh and viewpoint prediction
stage and the subsequent test-time adaptation stage, as illustrated in Fig. 4.

3.2 Feed-forward Initial Prediction
Given a single view input image, we first predict a coarse mesh and its viewpoint by the
base Image-to-3D model. We can adapt a pre-trained 2D detector (e.g., Faster R-CNN [12])
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into our system, ensuring that it encompasses the specific class we intend to reconstruct.
We then integrate the separate 3D detection and mesh prediction networks that have the 2D
detections as input and output SDF representation for mesh and its viewpoint for each object
in the input scene, respectively. We train the 3D networks on the Pix3D [43] and SUN
RGB-D [42] datasets. We refer to the whole pipeline as the base model [31, 50].

3.3 Learnable Virtual Camera
Recall that we obtain predictions for the initial mesh and camera viewpoint (e.g., radius,
elevation and azimuth angles) using the feed-forward model. At test time, the camera pa-
rameters of camera focal length and pose parameters are unknown, leading to the ambiguity
between 2D pixel information and 3D shape mapping. To address this ambiguity, we define
a learnable virtual camera, where we set pre-defined camera intrinsics and adapt the extrinsic
pose of the virtual camera. We need refinement to align the mapping because the viewpoint
estimation from the previous step is just an initial guess and may be erroneous.

Getting aligned 3D mesh to 2D image observation is essential to utilize multi-view diffu-
sion priors. In the pre-optimization stage, we set the initial viewpoint from these predictions
and first update the radius of our virtual camera by optimizing the initial mesh rendering
to be aligned with the reference image with mask loss. In the main optimization stage, we
propose to self-calibrate the virtual camera pose by simultaneously optimizing our 3D mesh
with PBR texture to achieve a more accurate alignment between the 2D image and the 3D
space. We estimate and update the reference viewpoint (θre f ,φre f ,rre f ) to align between 2D
reference image and the 3D shape, as shown in Fig. 5. This approach refines the mapping
between a 2D image and 3D space and obtains consistent 3D results, which is vital for holis-
tic scene reconstruction. Based on the reference viewpoint, we sample the relative viewpoint
(∆θ ,∆φ ,∆r) as a condition to the multi-view diffusion model [25].

3.4 Test-Time Adaptation for 3D Reconstruction.
We employ DMTet [40] as our 3D representation, which is characterized by two essen-
tial features; a deformable tetrahedral grid used to represent 3D shapes and a differentiable
marching tetrahedral (MT) layer designed to extract explicit triangular meshes. DMTet has
VT vertices in the tetrahedral grid T , which can be expressed as (VT ,T ).

DMTet initialization from coarse geometry. To model the geometry and texture of a 3D
object, for each vertex vi ∈ VT , we learn the signed distance function (SDF) s(vi), vertex
deformation offset ∆vi and per-vertex physically based rendering (PBR) material properties
kPBR, with hash-grid positional encoding [29] function τ as follows:

[s(vi),∆vi,kPBR] = Θ(τ(vi);θ), (1)

where MLP network Θ has the parameters θ . Before optimizing the target object from the
reference image, we initialize DMTet with the initial shape obtained from the base model.
From this initial mesh, we randomly sample a set of points {pi ∈ R3} where pi represents a
point in P which is the mesh vertices. We initialize the DMTet grid and its neural parameters
to fit the initial mesh prediction by solving a SDF optimization problem as follows:

θ
∗ = argmin

θ
∑

pi∈P
∥s(τ(pi);θ)−SDF(pi)∥2

2. (2)

Citation
Citation
{Sun, Wu, Zhang, Zhang, Zhang, Xue, Tenenbaum, and Freeman} 2018

Citation
Citation
{Song, Lichtenberg, and Xiao} 2015

Citation
Citation
{Nie, Han, Guo, Zheng, Chang, and Zhang} 2020

Citation
Citation
{Zhang, Cui, Zhang, Zeng, Pollefeys, and Liu} 2021

Citation
Citation
{Liu, Wu, Vanprotect unhbox voidb@x protect penalty @M  {}Hoorick, Tokmakov, Zakharov, and Vondrick} 2023{}

Citation
Citation
{Shen, Gao, Yin, Liu, and Fidler} 2021

Citation
Citation
{M{ü}ller, Evans, Schied, and Keller} 2022



6 YU-JI ET AL.: METTA

Using the pre-optimized network Θ and a differentiable renderer R, e.g., Nvdiffrast [18], we
obtain the RGB rendering image x as x = R(θ ,c), where c represents the sampled camera
viewpoint. We randomly sample camera viewpoints within the range of [-45◦, 45◦] for the
elevation angle and [0◦, 360◦] for the azimuth angle.
Jointly optimizing shape, texture & camera. Given the initialized DMTet and its cor-
responding MLP Θ, we proceed to adapt the shape, texture and the virtual camera pose
jointly. To update Θ parameterized by θ , we utilize Score-Distillation Sampling (SDS) loss,
which calculates per-pixel gradients by computing the difference between predicted noise
and added noise as follows:

∇θLSDS(ψ,x) = E
[

w(t)(εψ(zt ;y, t)− ε)
∂z
∂x

∂x
∂θ

]
, (3)

where ψ parameterizes multi-view aware image diffusion model, x represents the RGB ren-
dering output, w(t) signifies a weight function for different noise levels, zt denotes the latent
encoding of x with the addition of noise ε , and εψ is the predicted noise with reference image
y and noise level t.

We leverage several additional loss terms to aid in the optimization. To promote the
photometric consistency between the reference image and rendered textures of the 3D re-
construction, we introduce the photometric loss Lphoto = ∥Iref −xref∥1 between the reference
image Iref and the rendering from the reference viewpoint xref. Similar to the photometric
loss, we also leverage the mask loss Lmask = ∥M(Iref)−M(xref)∥1, which M is the masking
function used for binary separation between the object and the background. It compares the
mask of the reference image with the mask of the rendering to promote shape consistency.

To impose regularization on the mesh surface, parameterized by SDF representations, we
employ SDF regularization methods akin to those proposed by Liao et al. [20] and [19]. Uti-
lizing the binary cross entropy (BCE), the sigmoid function σ , and the sign function, we can
express the SDF regularizer Lreg = ∑(i, j)∈S

(
BCE(σ(si),sign(s j))+BCE(σ(s j),sign(si)

)
,

where si is the SDF value at the vertex vi and S is set of unique edges. To further en-
courage the smoothness of the reconstructed surface, we regularize the mean curvature
of SDF, which can be computed from discrete mesh Laplacian. The Laplacian loss is
defined as Llap = 1

N ∑
N
i=1 |∇2si|. The overall loss can be defined as the combination of

LSDS,Lphoto,Lmask,Lreg and Llap. We backpropagate the losses to jointly update the 3D
shape, PBR texture, and poses of the learnable virtual camera.

3.5 Neural PBR Texture Optimization
As aforementioned in Eq. 1, we employ DMTet in conjunction with a physically based
rendering (PBR) material model [27], similar to [30]. This choice allows us to incor-
porate spatially-varying Bidirectional Reflectance Distribution Function (BRDF) modeling
for textures, yielding a more realistic appearance. The PBR material properties, kPBR is
composed of three key components: diffuse lobe parameters kd ∈ R3, the roughness and
metalness term krm ∈ R2, and the normal variation term kn ∈ R3. The specular highlight
color, denoted as ks ∈ R3, can be determined with the renowned Cook-Torrance microfacet
BRDF model [9]. Given diffuse value kd and the metalness factor m, we compute ks as:
ks = (1−m) · 0.04+m · kd . It enables us to achieve photorealistic surface rendering and
enhances the potential of diffusion models for improved realism. More details are in the
supplementary material.
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Ref.�Image w/o�pre-optim. Ours�(full) Ref.�Image w/o�pre-optim. Ours�(full)

Figure 6: Necessity of pre-optimization for
radius. The “w/o pre-optim.” cases exhibit
geometry cut-off for exceeding the camera
space boundary and degradation of details.

Metric Ours (w/o self-calibration) Ours (full)

Chamfer Distance ↓ 0.0593 0.0580
F-Score (%) ↑ 50.35 51.15

Table 1: Effectiveness of self-calibration
for angles. Ours (full) shows better consis-
tency, depicting the self-calibration effective-
ness. We average over all fifteen samples.

4 Experiments
In this section, we first explain the experimental setup in Sec. 4.1. Following that, we show
the verification of our system design choices (e.g., virtual camera and test-time adaptation)
in Sec. 4.2. We demonstrate our high-fidelity textured mesh reconstruction results in respect
of quality and quantity in Sec. 4.3 and Sec. 4.4, respectively.

4.1 Experimental Setup
To evaluate the cross-domain robustness of MeTTA’s 3D reconstruction performance, we
conduct experiments on the 3D-Front dataset [11], which has not been used in previous
single-view to 3D reconstruction methods [31, 50], and we select fifteen samples for evalu-
ation. To demonstrate that our pipeline is working in real-world, out-of-domain scenarios,
we manually acquire images from the real scene and the web. For in-domain evaluations, we
extract a subset from the Pix3D dataset [43]. Due to time complexity considerations at the
optimization, we had to limit the number of dataset selections to a few dozen.

4.2 Verification of System
In this section, we show the experiments to verify the effectiveness of our system design
choices, especially for the learnable virtual camera and the test-time adaptation stage.
Effectiveness of learnable virtual camera. We show the ablation studies of camera pre-
optimization and self-calibration. The pre-optimization stage is crucial to find the proper
radius scale for detailed structures, as shown in Fig. 6. We also present an ablation study
of the camera self-calibration in Table 1. We add angle perturbations of [-15, -10, -5, 5, 10,
15] degrees to initial viewpoint estimations. Then, we measure the average scores of the
results with respect to the 3D mesh obtained with no perturbation. The self-calibration stage
is essential to refine the mapping between a 2D image and 3D space and obtain physically
accurate and consistent 3D results, which is vital for total scene reconstruction.

0 100 300 1000 1500

Iteration

Ref.�Image

Figure 7: Intermediate results. Our method
robustly refines meshes and textures itera-
tively, even with poor initialization.

Effectiveness of test-time adaptation.
We show the intermediate iteration results
during the second stage to present the ne-
cessity of the test-time adaptation (TTA)
in Fig. 7. While bad initials occur quite
often in the Image-to-3D module due to
an out-of-distribution gap between train-
ing and test, the intermediate results clearly
show the strength and necessity of our sec-
ond TTA stage.
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Novel ViewsRef. Image Initial Mesh Input View

Figure 8: Unseen real-world experiments about manually acquired data. We showcase
the effectiveness of our test-time adaptation for real scenarios.

Novel ViewsRef. Image Initial Mesh Input View

Figure 9: Unseen real-world experiments about in-the-wild web images. We showcase
the effectiveness of our test-time adaptation for real scenarios.

4.3 Qualitative Analysis

We evaluate and compare the 3D mesh reconstruction quality of MeTTA with the competing
methods. For more qualitative results, please refer to the supplementary material.

Textured 3D mesh reconstruction. We assess the quality of reconstructed 3D textured
meshes in terms of geometric and appearance attributes. In Fig. 8, our results show notable
achievement, where we can reconstruct a realistically textured novel-view 3D mesh only
from a partial observation of the 3D object in the previously unseen scenarios. In Fig. 9, we
conduct another real-world experiment about web images and show fine-grained detailed 3D
textured mesh reconstruction results. In Fig. 10, feed-forward methods [31, 50] predict the
coarse geometry corresponding to the reference image to some extent. However, for detailed
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Novel�ViewsRef. Image Initial Mesh Input View

Figure 10: In-domain experiments. We showcase the effectiveness of our test-time adapta-
tion of in-domain datasets in which the Image-to-3D module is trained.

geometry and realistic texture, it is essential to apply our test-time adaptation process, even
for the in-domain settings.

Comparison with feed-forward methods. We compare ours to previous feed-forward
reconstruction methods [31, 50] for visual quality. Thanks to the test-time adaptation with
multi-view generative prior, we can get accurate 3D shapes with realistic PBR textures, as
shown in Fig. 11.

Comparison with iterative methods using generative priors. We compare our single im-
age to 3D reconstruction results to existing generative priors methods [25, 28, 44]. Because
previous methods do not deal with viewpoint information as our learnable virtual cameras,
their 3D reconstruction results are not aligned with the reference image and show distorted
results, as shown in Fig. 12.

4.4 Quantitative Analysis

We also conduct quantitative comparisons to assess the quality of textured mesh reconstruc-
tion and the effectiveness of geometric properties.

Comparison with feed-forward methods. We compare ours to feed-forward reconstruc-
tion methods [31, 50] which are also the base models to evaluate whether they have a valid
and accurate 3D structure. We evaluate the Chamfer Distance of sampled points between
the ground-truth mesh and output mesh of each method. In Table 2, MeTTA outperforms
geometry reconstruction than competing methods. Note that our optimization process does
not access the ground-truth 3D information, e.g., point clouds, voxels, and meshes, while
previous methods are trained to minimize Chamfer Distance with ground-truth 3D shapes as
direct supervision. Note that MeTTA also reconstruct fine-grained geometries with utilizing
only 2D reference image, compared to others which are trained with 3D shape dataset [43].

Comparison with iterative methods using generative priors. We compare the texture
reconstruction quality of MeTTA with the competing methods: RealFusion [28], Zero-1-to-
3 [25] and Make-It-3D [44]. In Table 3, we measure the similarity between the reference
image and the rendered image at the reference view and novel views, respectively. We use
three metrics: PSNR, LPIPS [51], and CLIP score [34]. The CLIP score evaluates the se-
mantic similarity. To see the appearance consistency between novel views, we also report the
minimum value of the CLIP score. MeTTA mostly outperforms the competing methods in
both reference view and novel view rendering qualities. The results highlight the MeTTA’s
capability of preserving the semantics of 3D objects, even for the occluded novel views,
while achieving high-fidelity 3D reconstruction.
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MeTTA
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Figure 11: Comparison with
feed-forward methods.

Ref.�
Image
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(CVPR�2023)
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(ICCV�2023)

MeTTA
(Ours)

Zero123
(ICCV�2023)

Figure 12: Comparison with iterative methods using
generative priors. Ours show photo-realistic texture de-
tails with physically accurate geometry.

Metric MGN [31] LIEN [50] MeTTA (Ours)

Chamfer Distance ↓ 0.1089 0.0975 0.0943

Table 2: Cross-domain evaluation of
the single-view to mesh methods. We
evaluate on unseen test dataset [11].

Method
Reference View Novel Views

LPIPS ↓ PSNR [dB] ↑ CLIP Score ↑ CLIP Score ↑ min. CLIP Score ↑
RealFusion [28] 0.1809 21.56 0.8494 0.7538 0.7030
Zero-1-to-3 [25] 0.1079 23.53 0.9170 0.7661 0.6670
Make-It-3D [44] 0.0867 22.45 0.9386 0.8937 0.8046
MeTTA (ours) 0.0777 22.89 0.9465 0.8942 0.8286

Table 3: Comparisons of texture reconstruction
and perceptual quality.

5 Discussion, Limitation, and Conclusion

In this work, we present MeTTA, a monocular 3D textured mesh reconstruction with gen-
erative test-time adaptation. Our approach addresses several challenges in reconstructing a
3D textured mesh from a single image. First, we highlight the limitations of single-view to
3D mesh prediction methods based on feed-forward manners, which often struggle to ensure
high-quality mesh estimation results due to limited 3D shape representation learned from
the existing closed training set. Second, we emphasize the necessity of self-calibrating the
learnable virtual camera to connect different coordinate spaces between Image-to-3D shape
models and the multi-view image generative prior model. Tackling the challenges enables
us to achieve quality geometry and photo-realistic texture appearance, complying with input.
Finally, We discuss our limitations and conclude with future directions.

Optimization-based system. Ours is much faster than fair competitors, optimization-based
approaches [28, 44]. Specifically, our test-time adaptation stage takes 30 minutes per object,
compared to 193 minutes of RealFusion [28] and 91 minutes of Make-It-3D [44]. However,
we acknowledge that there is still work to achieve practicality, especially in real-time.

0 100 300 1000 1500Ref. Image

Iteration

Figure 13: Possibility of category extension.
Because the Image-to-3D module is trained
with 9 indoor object classes [43], it predicts
the image as a “bed” rather than a “car”.

Category generalization. Our definition
of “cross-domain” implies training and test-
ing on different datasets within the same
intra-category, e.g., furniture to furniture.
Trained on a small-scale 3D dataset [43],
our Image-to-3D module’s prediction is
category-specific. Despite this, testing in an
inter-category scenario in Fig. 13 shows our
method is reasonably effective, albeit not
designed for such cases.

Future direction. Our two-stage opti-
mization method could be integrated into
an end-to-end approach for improved speed
and performance. Enhancing the Image-to-3D stage with more data may improve category
generalization. We aim to investigate this in future work.
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