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A Pipeline
To make it easier for the reader to understand our method, Fig. A1 shows the overall process
for TRAIN combined with vanilla AT.

Discussion. LBGAT also adopts a two-model framework and transfers the prior knowl-
edge of M to M′. Nonetheless, there exist notable distinctions between our proposed method
and LBGAT, which can be summarized as follows:

1. Different perspectives. LBGAT mitigates natural accuracy degradation by focusing on
the guidance of the natural classifier boundary. Different from it, our proposed TRAIN
emphasizes the importance of the topology of the sample in the representation space.
By combining the two perspectives, we can further enhance the model’s performance,
as confirmed by the experimental results.

2. Different interactions between models. In LBGAT, M and M′ affect each other which
still has the negative impact of the adversarial samples on the natural samples. However,
when M remains independent, optimizing LBGAT becomes challenging due to the
inherent differences between the two models. In TRAIN, M unidirectionally influences
M′ and as an anchor to preserve the original topology of natural samples in the repre-
sentation space to avoid the negative influence of the adversarial samples on the natural
samples. This design choice effectively mitigates the adverse effects of adversarial
samples on natural samples.

These differentiating factors highlight the unique contributions of our proposed TRAIN
method in addressing the natural accuracy degradation during adversarial training. By
considering the topological aspects of samples to avoid the negative impact of adversarial
samples, TRAIN offers a novel and effective approach for enhancing model robustness and
performance.

B The Flexibility of TRAIN
Different from other methods, TRAIN mitigates natural accuracy degradation by adopting
a novel topological perspective. Moreover, TRAIN could be applied to other adversarial

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Eq. (3)

Eq. (4)

Eq. (1)

//

Figure A1: Overall framework of TRAIN. Specifically, we train a standard model M and an
adversarial model M′. The standard model takes natural samples X as input and is optimized
by cross-entropy loss. On the other hand, the adversarial model takes adversarial samples
X ′ as input and is optimized by robust loss Lrobust(·) and topology preservation loss LTP(·).
LTP(·) constructs and aligns the neighborhood relation graph P and Q in the representation
spaces of M and M′, respectively. It can preserve the topological relationships among samples
to reduce the negative effects of the adversarial samples during adversarial training.

training methods, such as vanilla AT [10], TRADES [17], and LBGAT [4], in a plug-and-play
way. To validate the effectiveness of our proposed enhancements, we conduct comprehensive
validation experiments on these strong baselines. We have introduced the robust loss of
vanilla AT in our paper. TRADES [17] improves classification performance by introducing
a regularization term, which penalizes the discrepancy between the logits for adversarial
examples and their corresponding natural images. Its optimization objective is defined as:

argmin
θ

E(x,y)∈D

(
L(x,y;θ)+β max

δ∈S
L(x+δ ,x;θ)

)
, (1)

where β is a hyper-parameter and its value means the strength of regularization for robustness.
TRADES has proven highly effective and remains a strong baseline for adversarial training to
this day. Here we will elucidate the specifics of our approach when integrated with another
strong baseline LBGAT.

LBGAT leverages the model logits obtained from a standard model to guide the learning
process of an adversarial model. It is usually combined with vanilla AT and TRADES. The
total loss LAT of adversarial model M′ combined with LBGAT and vanilla AT is:

LAT = L(z′x′i ,yi)+ γ||logit ′x′i − logitxi ||2

+λ∑
i
∑

j

[
pi| jlog

(
pi| j
qi| j

)
+
(
1− pi| j

)
log

(
1− pi| j
1−qi| j

)]
,

(2)

and the total loss of adversarial model LAT combined with LBGAT and TRADES is:

LAT = L(z′xi
,yi)+βKL(z′xi

||z′x′i)+ γ||logit ′x′i − logitxi ||2

+λ∑
i
∑

j

[
pi| jlog

(
pi| j
qi| j

)
+
(
1− pi| j

)
log

(
1− pi| j
1−qi| j

)]
,

z′xi
=

exp(logit ′xi
)

∑
N
j=1 exp(logit ′x j

)
,z′x′i =

exp(logit ′x′i)

∑
N
j=1 exp(logit ′x′j)

,

(3)
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where KL is Kullback–Leibler divergence, which is commonly used to concretely implement
the robust regularization of TRADES. γ is the hyper-parameter of LBGAT, and β is the
hyper-parameter of TRADES.

C Experimental Settings
Datasets. Following [4, 6, 12], we conduct extensive evaluations on popular datasets, includ-
ing CIFAR-10, CIFAR-100 [8] and Tiny ImageNet [5] dataset to validate the effectiveness
of our algorithm. The CIFAR-10 and CIFAR-100 datasets consist of a total of 60,000 color
images with dimensions of 32×32 pixels. Among these 50,000 images are designated for
training and the remaining 10,000 images are reserved for testing. Furthermore, CIFAR-10
has 10 categories while CIFAR-100 has 100 categories. Furthermore, the Tiny ImageNet
dataset includes 120,000 color images with dimensions of 64×64 pixels in 200 categories,
with each category containing 500 training images, 50 validation images, and 50 testing
images. This dataset offers a larger image size and a broader range of categories, enabling a
more challenging evaluation of our algorithm’s performance.

Baselines. We choose three strong baselines to demonstrate the effectiveness of our
method: Vanilia AT [10], TRADES [17], and LBGAT. For TRADES, we set β = 6.0. For
LBGAT, we conduct experiments based on vanilla AT and TRADES (β = 6.0). We also add
ALP [7] as a baseline in the Tiny ImageNet dataset. In addition, we combine TRAIN with
them to demonstrate the superiority of our approach. To provide a comprehensive evaluation
and comparison with other state-of-the-art adversarial training methods, we include additional
baseline: MART [15], FAT [18], GAIRAT [19], AWP [16], SAT [13], LAS [6], and ECAS [9].

Evaluation metrics. To evaluate the generalization of the model on natural and adversarial
samples, our evaluation metrics are natural data accuracy (Natural Acc.) and robust accuracy
(Robust Acc.). Robust accuracy is the model classification accuracy under adversarial attacks.
As specified in the respective publications, we choose three representative adversarial attack
methods for evaluation: PGD-20, C&W-20 [2], and Auto Attack [3]. We denote the model’s
defense success rate under those attacks separately as PGD-20 Acc., C&W-20 Acc., and AA
Acc.. Similar to manifold learning, we make kNN test accuracy as a topology score due
to kNN relying solely on the relationships among samples to classify. We utilize training
sets as support sets (natural samples and adversarial samples generated by PGD-20) and
methods [11, 14]. In Fig. 3 we set k as 5,10,20,30,40,50, and we observe that the choice
of k does not affect the relative ranking of the topological relationships among samples in
different representation spaces. So in Tables A1 and A2, we set k as 30.

Data pre-process. Similar to LBGAT [4], for CIFAR-10/100 datasets, the input size
of each image is 32× 32, and the training data is normalized to [0,1] after standard data
augmentation: random crops of 4 pixels padding size and random horizontal flip, and the
test set is normalized to [0,1] without any extra augmentation; For the training set of Tiny
ImageNet, we resize the image from 64×64 to 32×32, and the data augmentation is random
crops with 4 pixels of padding; finally, we normalize pixel values to [0,1], and for the test set,
we resize the image to 32×32 and normalize pixel values to [0,1]. Others are the same as
CIFAR datasets.

Training details. For Tables 1 and 2, we follow state-of-the-art adversarial training
method LAS [6]. ε is 8/255, and The initial learning rate is set to 0.1 with a total of 110
epochs for training and reduced to 0.1x at the 100-th and 105-th epochs. Weight decay is 5×
10−4, and random seed is 1. ResNet-18 is the backbone of standard models, and WideResNet-
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Defense Natural Acc. Robust Acc. Topology Score
PGD-20 Acc. C&W-20 Acc. AA Acc. Natural Robust

Standard Training 94.46 0.00 0.00 0.00 94.94 -

Vanilla AT [10] 86.69 53.45 53.72 48.95 86.51 53.94
Vanilla AT + TRAIN 88.85(↑ 2.16) 55.64(↑ 2.19) 56.18(↑ 2.46) 50.89(↑ 1.94) 89.11(↑ 2.60) 56.55(↑ 2.61)

Vanilla AT + LBGAT [4] 86.55 54.34 53.35 47.27 86.64 54.26
Vanilla AT + LBGAT + TRAIN 89.42(↑ 2.87) 56.21(↑ 1.87) 57.48(↑ 4.13) 51.77(↑ 4.50) 89.25(↑ 2.61) 56.59(↑ 2.33)

TRADES* [17] 84.42 56.59 54.91 51.91 85.58 56.73
TRADES + TRAIN 87.30(↑ 2.88) 58.20(↑ 1.61) 56.31(↑ 1.40) 53.09(↑ 1.18) 90.01(↑ 4.43) 58.86(↑ 2.13)

TRADES + LBGAT* [4] 81.98 57.78 55.53 53.14 84.57 57.79
TRADES + LBGAT + TRAIN 87.62(↑ 5.64) 57.73(↓ 0.05) 58.08(↑ 2.55) 53.64(↑ 0.50) 89.50(↑ 5.00) 57.98(↑ 0.19)

Table A1: Results on CIFAR-10. When added to the existing baseline under most settings,
our method achieves both natural accuracy and robust accuracy improvements, particularly in
terms of C&W-20 Acc. “*” are the results directly quoted from LBGAT.

Defense Natural Acc. Robust Acc. Topology Score
PGD-20 Acc. C&W-20 Acc. AA Acc. Natural Robust

Standard Training 77.39 0.00 0.00 0.00 77.07 -

Vanilla AT [10] 60.44 28.06 27.85 24.81 57.17 31.32
Vanilla AT + TRAIN 66.39(↑ 5.95) 29.88(↑ 1.82) 29.84(↑ 1.99) 25.81(↑ 1.00) 64.70(↑ 7.53) 32.84(↑ 1.52)

Vanilla AT + LBGAT [4] 61.01 30.10 28.09 25.63 61.28 30.47
Vanilla AT + LBGAT + TRAIN 68.20(↑ 7.19) 29.83(↓ 0.27) 30.84(↑ 2.75) 25.88(↑ 0.25) 66.08(↑ 4.80) 32.48(↑ 2.01)

TRADES* [17] 56.50 30.93 28.43 26.87 52.57 32.17
TRADES + TRAIN 65.28( ↑ 8.78) 33.97(↑ 3.04) 30.86(↑ 2.43) 28.25(↑ 1.38) 65.78(↑ 13.21) 34.53(↑ 2.36)

TRADES + LBGAT* [4] 60.43 35.50 31.50 29.34 61.06 37.52
TRADES + LBGAT + TRAIN 62.62(↑ 2.19) 36.27(↑ 0.77) 31.72(↑ 0.22) 29.19(↓ 0.15) 64.84 (↑ 3.78) 38.25(↑ 0.73)

Table A2: Results on CIFAR-100. Similar to Table A1, our method can improve the natural
accuracy (up to 8.78%), robust accuracy (up to 3.04%), and topology score (up to 13.21%)
of baselines. “*” are the results directly quoted from LBGAT.

34-10 is the backbone of adversarial models. The adopted adversarial attacking method during
training is PGD-10, with a perturbation size ε = 0.031, a step size of perturbations ε1 = 0.007.
For different experiment settings, we choose different λ . We set λ = 5 on CIFAR-10 dataset,
and λ = 20a on CIFAR-100 dataset, where a = 2

1+e−
10t
100 −1

and t is the current t-th epoch

during training. Finally, all experiments were done on GeForce RTX 3090.

D Sensitivity of different learning rate
Experimental settings. For Table A1, Table A2, qualitative experiments, and all ablation
experiments, we keep the same super-parameter configuration as LBGAT [4]. The initial
learning rate is set to 0.1 with a total of 100 epochs for training and reduced to 0.1x at the
75-th and 90-th epochs. The optimization algorithm is SGD, with a momentum of 0.9 and
weight decay of 2× 10−4. Moreover, all our experimental results are reproducible with a
random seed of 1.

Our method exhibits superior performance when applied with the new hyperparameters.
According to Tables A1 and A2, TRAIN can effectively increase both natural and robust
accuracy, and contribute to the topology preservation of both natural and adversarial samples.

In Table A1, TRAIN gets an improvement by 2.16% compared to vanilla AT baseline on
natural data. It surpasses vanilla AT on PGD-20, C&W, and AA accuracy by 2.19%, 2.46%,
and 1.94% respectively, indicating its high robustness. Our method also has improvements on
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Defense Clean Acc. PGD-20 Acc.

Vanilla AT* [10] 30.65 6.81
Vanilla AT + LBGAT* [4] 36.50 14.00
ALP* [7] 30.51 8.01
LBGAT + ALP* [4] 33.67 14.55
TRADES (β = 6.0)* [17] 38.51 13.48
TRADES (β = 6.0) + LBGAT* [4] 39.26 16.42

TRADES (β = 6.0) + Ours 41.12(↑ 2.61) 16.18(↑ 2.70)
TRADES (β = 6.0) + LBGAT+ Ours 41.53(↑ 2.27) 17.09(↑ 0.67)

Table A3: Quantitative experiment on Tiny ImageNet. "*" are the results directly quoted from
LBGAT.

LBGAT by 4.50% to 1.87% in all aspects. For another common baseline, TRADES, TRAIN
also gets competitive results on both natural and adversarial data. Note that natural accuracy
decreases when applying LBGAT to TRADES, so it also brings a large enhancement when
combined with our method. For the topology score which is measured by kNN accuracy,
TRAIN could boost the performance by a large margin. Since kNN classification is based
only on inter-sample relationships, such results prove that TRAIN could mitigate topology
disruptions of both natural and adversarial samples from adversarial training.

The overall results on CIFAR-100 are similar to CIFAR-10. As shown in Table A2,
TRAIN performs better than vanilla AT and LBGAT and gets a further improvement when
deployed with LBGAT simultaneously. For TRADES, our method surpasses it by a large
margin (8.78%) on natural data and improves the robust accuracy by 3.04%. Adding LBGAT
to TRAIN causes a decrease in natural accuracy but achieves the best accuracy in PGD-20
and C&W-20. The above results show that the proposed TRAIN could be applied to popular
adversarial training pipelines for achieving SOTA performance on both natural accuracy and
robust accuracy. Despite a slight decrease in individual robust metrics, we have achieved a
better balance between natural accuracy and adversarial robustness overall. For the topology
score, we can find that combining the baseline with TRAIN can further enhance the quality of
topology for both natural and adversarial samples in the representation space.

E Quantitative results on Tiny ImageNet.
To demonstrate the effectiveness of our approach on a highly demanding dataset, we per-
formed rigorous experiments on the Tiny Imagenet dataset. The results, as depicted in
Table A3, clearly demonstrate that the combination of our algorithm with TRADES and
LBGAT techniques leads to substantial improvements in both natural accuracy and adversarial
robustness. When combined with Trades, our approach achieves a 2.61% improvement
in natural accuracy and a 2.70% improvement in robust accuracy. When combined with
TRADES+LBGAT, our method achieves a 2.27% improvement in natural accuracy and a
0.67% improvement in robust accuracy.

F More Ablation Studies
In this section, we delve into TRAIN to study its effectiveness in batch size, hyper-parameter
λ , and model architectures. We also analyze the time complexity and training time of our
method. All the ablation experiments are based on the CIFAR-100 dataset and combined with
TRADES. All ablation experimental settings (including ablation on different relationship
preservation methods in our paper) are the same as Tables A1 and A2.
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Backbone of M′ Training Strategy Backbone of M Clean Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

None Standard Training ResNet-18 77.39 0 0 0

WideResNet34-10 TRADES + Ours ResNet-18 62.62 36.27 31.72 29.19

None Standard Training WideResNet34-10 78.11 0 0 0

WideResNet34-10 TRADES + Ours WideResNet34-10 63.09 35.54 30.41 28.76

Table A4: The ablation experiment about different backbones of the standard model.

Batch Size Natural Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

128 66.39 29.88 29.84 25.81
256 66.55 31.08 30.72 26.07
384 66.26 30.60 30.16 25.41

Table A5: The ablation experiment about different batch sizes.

Impact of batch size. As shown in Table A5, we tried 128, 256, 384 samples per batch
for relation calculating. Among them, a batch size of 256 achieves the best results, but the
difference among different batch sizes is not large. Overall our method is not sensitive to
different batch sizes.

To ensure fair comparisons with other methods, we chose a batch size of 128 for our other
experiments.

0 5a 10a 20a 50a

Natural Acc. 57.99 61.52 63.21 65.28 66.40
PGD-20 Acc. 31.53 32.31 33.47 33.90 33.62

LTP 0.66 0.35 0.32 0.27 0.24
Table A6: Sensitivity analysis of hyper-parameter λ .

Sensitivity analysis of hyper-parameter λ . As Table A6 shows, with the increase of λ

in Eq. (3), natural accuracy always gets higher; LTP (calculated from the test set) gets lower;
while the PGD-20 accuracy rises at first and then remains stable. It is reasonable because a
large λ forces the topology of clean samples to be highly close to that of standard models.
Finally, we set λ as 20a according to the PGD-20 accuracy following [10].

Impact of the different standard models. As depicted in Table A4, our approach
exhibits robustness to variations in the backbones of standard models. Specifically, we observe
that ResNet18 achieves a comparable trade-off between natural accuracy and adversarial
robustness to WideresNet34-10 on the CIFAR-100 datasets while incurring lower training
costs.

Table A7 shows the results of using different standard training strategies. To expedite the
training process, a pre-trained standard model can be used in TRAIN (vanilla AT+TRAIN∗).
However, training the standard model and adversarial model jointly achieves superior results.
This is attributed to the fact that the representation spaces of the two joint models are closer,
facilitating optimization procedures.
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Methods Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

Vanilla AT 60.44 28.06 27.85 24.81
Vanilla AT + TRAIN* 65.15 28.00 27.90 24.91
Vanilla AT + TRAIN 66.39 29.88 29.84 25.81

Table A7: Ablation experiment about different standard models on CIFAR-100. TRAIN∗

means using a well-trained standard model, and TRAIN means training two models jointly.

Methods Clean Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

Vanilla AT 35.10 18.89 16.19 14.63
Vanilla AT+ TRAIN 38.58 20.25 17.64 15.39

TRADES 38.39 17.90 14.36 13.38
TRADES +TRAIN 43.64 18.52 14.86 13.51

Table A8: Experiments using MobileNetv3 on CIFAR100.

Impact of different backbones of M′. We conduct experiments on MobileNetv3, and the
results reinforce the effectiveness of our approach across different backbones. As shown in
Table A8, our method can further improve the baseline, especially in natural accuracy. We
achieve a maximum improvement of 5.25% in natural accuracy and a maximum improvement
of 1.45% in robust accuracy.

We can also find that the experimental results on MobileNet v3 are inferior compared to
WideResNet34-10, both in terms of robustness and natural sample accuracy. This observation
can be attributed to the positive correlation between the effectiveness of adversarial training
algorithms and model capacity [1], and to reduce inference speed, MobileNet v3 has a
significantly smaller model capacity compared to WideResNet34-10.
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