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Abstract

Despite the effectiveness in improving the robustness of neural networks, adversarial
training has suffered from the natural accuracy degradation problem, i.e., accuracy on
natural samples has reduced significantly. In this study, we reveal that natural accuracy
degradation is highly related to the disruption of the natural sample topology in the repre-
sentation space by quantitative and qualitative experiments. Based on this observation, we
propose Topology-pReserving Adversarial traINing (TRAIN) to alleviate the problem by
preserving the topology structure of natural samples from a standard model trained only on
natural samples during adversarial training. As an additional regularization, our method
can be combined with various popular adversarial training algorithms, taking advantage of
both sides. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet show
that our proposed method achieves consistent and significant improvements over various
strong baselines in most cases. Specifically, without additional data, TRAIN achieves up
to 8.86% improvement in natural accuracy and 6.33% improvement in robust accuracy.
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((a)) Standard training ((b)) Adversarial training ((c)) TRAIN

…
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Figure 1: Illustrations for representation space under different training strategies.

1 Introduction
Adversarial training [10, 20, 25] has been proven to effectively defense adversarial attacks [8,
15, 17] of neural networks [2, 29]. However, models trained by adversarial training strategy
have shown a significant reduction of accuracy in natural samples [17], which is usually
called natural accuracy degradation [6]. This problem hinders the practical application of
adversarial training, as natural samples are the vast majority in reality [11].

Existing works attempt to alleviate natural accuracy degradation by data augmentation
or extra data collection [24, 32], distilling classifier boundary of the standard model [1, 4,
6], instance reweighting [38], early-stopping [37], adjustments of loss functions [20], and
learnable attack strategies during training [12, 14]. Nevertheless, these approaches have not
fully closed the natural accuracy gap between adversarial and standard training.

Unlike previous efforts, we attempt to explain the natural accuracy degradation from a
new perspective, topology. Topology refers to the neighborhood relation of data in the repre-
sentation space [23]. Some adversarial training studies [22, 35] have shown the importance of
topology in adversarial robustness generalization. However, they do not attenuate the negative
impact on the natural samples produced by the adversarial samples, resulting in incomplete
topology preservation, the natural accuracy degradation still exists.

We conjecture that adversarial training destroys the topology of natural samples in the
representation space, leading to a decrease in natural accuracy. As illustrated in Fig. 1(a),
a model after standard training has a well-generalizing topology of natural samples but is
vulnerable to adversarial samples, which are usually far from their true class distribution in
the representation space. Adversarial training pulls simultaneously the adversarial samples
and their corresponding natural samples nearer [18] (Fig. 1(b)) to improve the robustness of
the model while leading to the poor topological structure of the natural sample features due
to the negative influence of the adversarial samples. Qualitative and quantitative analyses
support the intuition that natural accuracy correlates with the topology preservation extent
(see Sec. 3.2 for more details).

Inspired by the above intuition, we propose a new approach called Topology-pReserving
Adversarial traINing (TRAIN) to alleviate natural accuracy degradation (Fig. 1(c)), which
closes the gap between adversarial and corresponding natural samples while preserving the
well-generalizing topology of the standard model. A straightforward solution is to distill
the natural sample features of the standard model or the relationships based on the absolute
distance between samples during adversarial training. However, it suffers from optimization
difficulties due to the great gap between standard and adversarial models. So we construct the
topological structure of data in the representation space based on the neighbor graph for each
model. We define the edge weight of the graph as the probability that different samples are
neighbors, and topology preservation is achieved by aligning the standard model’s graph and
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the adversarial model’s graph. Meanwhile, the optimization process of the standard model is
not affected by the adversarial model, to reduce the negative impact of adversarial samples.
Experiments show that benefitting from topology preservation, TRAIN improves both the
natural and robust accuracy when combined with other adversarial training algorithms.

Our contributions are as follows:

• We reveal that the topology of natural samples in the representation space plays an
important role in the natural accuracy of adversarial models, which provides a new
perspective on mitigating natural accuracy degradation.

• We propose a topology preservation adversarial training method that preserves the
topology structure between natural samples in the standard model representation space,
which can be combined with various adversarial training methods.

• Extensive quantitative and qualitative experiments on CIFAR-10, CIFAR-100, and Tiny
ImageNet datasets show the effectiveness of the proposed TRAIN (maximum 8.86%
improvement for the natural accuracy and 6.33% for the robust accuracy).

2 Related Work

2.1 Adversarial Training

Adversarial training [12, 16, 17, 26, 31, 33, 34, 36] is a prevailing method to improve the
adversarial robustness of DNNs. However, it decreases the accuracy of natural samples while
increasing the adversarial robustness compared with standard training. This phenomenon is
called “natural accuracy degradation” or “the trade-off between robustness and accuracy”.
Several works have been proposed to alleviate this problem. Zhang et al. [37] used early-
stopping. Rebuffi et al. [24] tried to use more training data by data augmentation or adding
extra data. Researchers [1, 4, 6] tried to distill the natural sample logits from the standard
model to the adversarial model. Zhang et al. [38] made use of instance reweighting. Pang et
al. [20] redefined adversarial training optimization goals. And Jia et al. [12] used reinforce-
ment learning to obtain learnable attack strategies. Different from them, we mitigate this
problem from the view of the topology of different data in the representation space. Some
works [22, 35] show topology is crucial for adversarial robustness generalization but ignore
the negative impact of adversarial examples, and still degrade in natural accuracy.

2.2 Knowledge Distillation in Adversarial Training

Knowledge distillation can transfer knowledge from a larger, cumbersome model (teacher) to
a smaller, more efficient model (student), which is commonly used for model compression.
Recently some algorithms have applied knowledge distillation to adversarial training. Some
works [9, 39] distilled large robust models for robust model compression. Different from
them, researchers [1, 4, 6] distilled the natural data logits of the standard model to enhance
adversarial training on natural accuracy. [4] considered additional temperature factors during
distillation. However, they did not constrain the topology of samples in the representation
space, and their distillation loss updates both standard and adversarial models simultaneously.
Therefore, they were still negatively affected by adversarial examples. The experimental
section also includes comparative evaluations of different knowledge distillation methods.
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((a)) Standard (77.39%/0.00%) ((b)) TRADES (56.50%/30.93%) ((c)) TRAIN (65.28%/33.97%)
Figure 2: Analytical experiments reveal the relationship between topology quality in the
representation space and natural accuracy. (a), (b), and (c) show the differences in the
representation space for the standard model, adversarial model (trained by TRADES with
β = 6.0), and TRAIN on CIFAR-100 training (small plots) and test sets (large plots). Natural
accuracy and PGD-20 accuracy are indicated in red and blue, respectively.
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Figure 3: Quantitative analysis reveals a negative correlation between the adversarial strength
and the topology score.

3 Topology’s Role in Adversarial Training

3.1 Formulation
Following vanilla AT [17], the goal of adversarial training is defined as:

argmin
θ

E(x,y)∈D

(
max
δ∈S

L(x+δ ,y;θ)

)
, (1)

where D is the data distribution for input x and its corresponding label y, θ is the model
parameters. δ stands for the perturbation applied to x and is usually limited by perturbation
size ε . S =

{
δ |∥δ∥p ≤ ε

}
is the feasible domain for δ . L(·) usually is the cross-entropy

loss for classification. By min-max gaming, adversarial training aims to correctly recognize
all adversarial examples (x′ = x+δ ). For descriptive purposes, we refer to models trained
only on natural samples as standard models and those trained using adversarial training as
adversarial models in the latter part.

3.2 Empirical Analysis
In this section, we analyze how adversarial training influences topological relationships com-
pared with standard models. We find that the quality of the topology is positively correlated
with natural accuracy, while negatively correlated with adversarial strength. Adversarial
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models are trained by TRADES [36], and here we consider the weights of the adversarial
loss function β as adversarial strength. Larger β represents the greater strength of adversarial
training. We choose the penultimate layer representations (before logits) of the standard
model and adversarial models for qualitative and quantitative experimental analysis. See
supplementary material for more details on experimental settings.

Qualitative analysis. As shown in Fig. 2, compared with the standard model on both
training the test sets, the representation visualization for adversarial models shows more
robustness, but a worse topology of data resulting in lower discrimination in different classes.

Quantitative analysis. We conduct quantitative analysis by setting the β = 1,2, ...,6 for
TRADES as different adversarial strengths, and use kNN accuracy as the topology score to
evaluate the quality of topology for different models, which is often used in manifold learning
[19, 30] to evaluate the quality of topology in dimension reduction. The higher the score,
the more reasonable topology between the samples. Specifically, we use both natural and
adversarial data (generated by PGD-20) in the CIFAR-100 training set as the support set to
predict the labels of natural and adversarial data in the test set. To verify the reliability of the
observation conclusion, we choose k = 5,10,20,30,40,50, respectively.

Fig. 3 shows the strength of adversarial training and their corresponding topology qualities
for different k. A negative correlation between the strength of adversarial training and the
topology quality could be observed.

Why does adversarial training destroy topological relationships? Adversarial repre-
sentations are usually far away from their true class distribution, while natural samples are
not. Adversarial training narrowing the adversarial representations and natural representations
concurrently usually makes the representation of natural samples further away from the
original distribution, and hurts the topology and discrimination of natural data representa-
tions. Zhang et al. [38] points out that adversarial training is equivalent to a special kind of
regularization and has a strong smoothing effect, which also supports our intuition.

4 Topology-Preserving Adversarial Training

4.1 Overall Framework
To reduce the negative impact of adversarial samples, we propose a method TRAIN that
focuses on preserving the topology of natural features from the standard model during
adversarial training. As shown in Alg. 1, we train two models simultaneously: a standard
model M with a cross-entropy loss LST(·) and an adversarial model M′ which is updated
by a specific adversarial training algorithm. For natural sample xi, the outputs of M(xi) are
the feature of the last layer fxi and logit logitxi

. Similarly, the outputs of M′(x′i) are f ′x′i and
logit ′x′i for aversarial sample x′i and f ′xi

and logit ′xi
for natural sample xi.

The loss LST(·) of M is formulated as:

LST = L(zxi ,yi),zxi =
exp(logitxi)

∑
N
j=1 exp(logitx j)

, (2)

where L is cross-entropy loss. And the overall loss LAT(·) of M′ is formulated as follows:

LAT = Lrobust(x′)+λLTP(M,M′), (3)

where Lrobust(·) denotes the adversarial robustness loss, which is determined by the specific
adversarial training algorithm employed. Additionally LTP(·) serves as a regularization item
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to preserve the topology of natural samples from M and updates only M′. A comprehensive
discussion regarding the specifics of LTP(·) will be discussed in the next subsection.

4.2 Topology Preservation in Adversarial Training
The topological structure is typically based on a neighborhood relation graph constructed by
the similarity among samples in the representation space [19, 23, 30]. In this graph, each
point is a sample in the representation space, while the edges are relationships among the
samples, and the weights assigned to the edges are determined by the similarity between the
samples. Consequently, the topology preservation can be precisely formulated as follows:

LTP = E(x,y)∈D (F(P,Q)) , (4)

where P and Q represent the neighborhood relation graph constructed by the inter-sample
similarity for M and M′, respectively. F(·) measures the similarity between two graphs.

Absolute relationship preservation. Directly applying cosine similarity to calculate
the pairwise distances di j and d′

i j between samples in representation spaces of M and M′ to
construct the neighborhood relation graph P and Q is a straightforward way:

P = {di j|0 < i, j ≤ N},Q = {d′
i j|0 < i, j ≤ N}, (5)

where di j and d′
i j are defined as:

di j = 1−
f T
xi

fx j

|| fxi ||2|| fx j ||2
, d̃′

i j = 1−
f ′Tx′i f ′x′j

|| f ′x′i ||2|| f
′
x′j
||2

. (6)

However, there exists a substantial difference in the representation space between the
adversarial model and the standard model, making it challenging to optimize the preservation
of direct absolute relationships.

Relative relationship preservation. Considering the significant gap between standard and
adversarial models, our objective is to use conditional probability distribution for modeling the
relationships between samples. Specifically, we define the edge weights of the neighborhood
relation graph as the probability that distinct samples are neighbors, thus ensuring topology
preservation through the alignment of the probability distributions of the two graphs.

Different from manifold learning [19, 30] which uses the regular Kernel Density Estima-
tion (KDE) for approximations of the conditional probabilities, we use the cosine similarity-
based affinity metric. This choice is motivated by the excessive hyper-parameter tuning
requirements and unacceptable training costs associated with KDE in adversarial training.

Kcos( fxi , fx j) =
1
2

(
f T
xi

fx j

|| fxi ||2|| fx j ||2
+1

)
,

=
1
2
(2−di j),

(7)

where Kcos is cosine similarity-based affinity metric value for xi and x j.
Moreover, we add a special term ρ j to better preserve the global structure of representation

space. ρ j represents the distance from the jth data point to its nearest neighbor. Subtracting ρ j
ensures the local connectivity of the graph, avoiding isolated points and thus better preserves
the global structure.

d̃i j = di j −ρ j, d̃′
i j = d′

i j −ρ
′
j. (8)

Citation
Citation
{McInnes, Healy, and Melville} 2018

Citation
Citation
{Rabunal, Dorado, and Sierra} 2009

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2008

Citation
Citation
{McInnes, Healy, and Melville} 2018

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}der Maaten and Hinton} 2008



MI, ET AL: TOPOLOGY-PRESERVING ADVERSARIAL TRAINING 7

Algorithm 1 Topology-Preserving Adversarial Training

Require: the step size of perturbations ε , batch size n, learning rate α , attack algorithm
optimization iteration times K, the number of training epochs T , adversarial model M′

with its parameters θ ′, standard model M with its parameters θ , loss weight λ and training
dataset (x,y) ∈ D

Ensure: robust model M′ with θ ′

1: Randomly initialize θ , θ ′

2: for i = 1, ...,T do
3: Sampling a random mini-batch X = {x1,x2, ...,xn} and corresponding labels Y =

{y1,y2, ...,yn} from D
4: Generating adversarial data X ′ = {x′1,x

′
2, ...,x

′
n} through attack algorithms (such as

PGD-K, FGSM)
5: fX , logitX = M(X)
6: f ′X ′ , logit′X ′ = M′(X ′)
7: Evaluate LST Eq. (2)
8: Evaluate LAT = λLTP +Lrobust Eq. (3)
9: Update model parameters:

10: θ = θ −α
1
n ∑

n
i=1 ∇θ LST

11: θ ′ = θ ′−α
1
n ∑

n
i=1 ∇θ ′LAT

12: end for

After normalization, we obtain the pi| j, which represents the conditional probability that
the ith natural sample is a neighbor of the jth natural sample in the representation space of M.

pi| j =
2− d̃i j

∑
N
k=1,k ̸= j(2− d̃ jk)

. (9)

Similarly, for the adversarial model M′:

qi| j =
2− d̃′

i j

∑
N
k=1,k ̸= j(2− d̃′

jk)
. (10)

So the neighborhood relation graph construction of M can be formalized as:

P =

{
pi| j

∣∣∣∣pi| j =
2− d̃i j

∑
N
k=1,k ̸= j(2− d̃ jk))

,0 < i, j ≤ N

}
. (11)

Similarly, the relationship graph for M′ is:

Q =

{
qi| j

∣∣∣∣qi| j =
2− d̃′

i j

∑
N
k=1,k ̸= j(2− d̃′

jk)
,0 < i, j ≤ N

}
. (12)

We use cross-entropy loss to measure the similarity of P and Q for such flexible relationships.
Finally, the LTP for TRAIN is formalized as:

LTP =CE(P,Q)

=∑
i
∑

j

[
pi| jlog

(
pi| j
qi| j

)
+
(
1− pi| j

)
log
(

1− pi| j
1−qi| j

)]
.

(13)
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((a)) Standard training ((b)) TRADES (β = 6.0) ((c)) TRAIN
Figure 4: t-SNE visualizations of penultimate layer features on CIFAR-10. Crosses and
circles are adversarial samples and natural samples, respectively. Different colors represent
different classes.

5 Experiments
Experimental settings Following [6, 12, 20], we conduct extensive evaluations on popular
datasets in adversarial training, including CIFAR-10, CIFAR-100 [13]. ResNet-18 is the
backbone of standard models, and WideResNet-34-10 is the backbone of adversarial models.
The adopted adversarial attacking method during training is PGD-10, with a perturbation
size ε = 0.031, a step size of perturbations ε1 = 0.007. For different experiment settings, we
choose different λ . We set λ = 5 on CIFAR-10 dataset, and λ = 20a on CIFAR-100 dataset,
where a = 2

1+e−
10t
100 −1

and t is the current t-th epoch during training. Finally, all experiments

were done on GeForce RTX 3090.
Our evaluation metrics are natural data accuracy (Natural Acc.) and robust accuracy

(Robust Acc.). Robust accuracy is the model classification accuracy under adversarial attacks.
Following previous works, we choose three representative adversarial attack methods for
evaluation: PGD-20, C&W-20 [3], and Auto Attack [5]. We denote the model’s defense
success rate under those attacks separately as PGD-20 Acc., C&W-20 Acc., and AA Acc.. To
provide a comprehensive evaluation and comparison with other state-of-the-art adversarial
training methods, we use their original hyperparameters in our settings, and include baselines:
Vanilia AT [17], TRADES [36], LBGAT, MART [31], FAT [37], GAIRAT [38], AWP [34],
SAT [27], LAS [12], and ECAS [14]. For TRADES, we set β = 6.0. For LBGAT, we
conduct experiments based on vanilla AT and TRADES (β = 6.0). We also provide details of
experimental settings and experiments on Tiny ImageNet [7] in supplementary materials.

5.1 Main Results
Quantitative results. As shown in Tables 1 and 2, TRAIN achieves a better trade-off between
natural accuracy and adversarial robustness compared with the most popular adversarial
training algorithms. TRADES, LBGAT, and ECAS achieve significant improvement in natural
accuracy by combining with TRAIN, and the robust accuracy is also relatively improved or
preserved.

Qualitative analysis. To showcase the efficacy of our algorithm in assisting the adversarial
model in constructing a well-generalizing topology in the representation space, we use t-SNE
to visualize samples from ten randomly selected categories in the CIFAR-100 test set and all
categories of the CIFAR-10 test set for qualitative analysis. Figs. 2 and 4 show the results of
CIFAR-100/10 datasets, respectively. For standard training (Figs. 2(a) and 4(a)), the natural
data exhibit clear clustering, while the adversarial samples appear disjointed, resulting in
poor performance on robust accuracy. The TRADES approach facilitates the alignment of
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Defense Natural Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

Vanilla AT* [17] 85.17 55.08 53.91 51.69
MART* [31] 84.17 58.56 54.58 51.10
FAT* [37] 87.97 49.86 48.65 47.48
GAIRAT* [38] 86.30 59.54 45.57 40.30
AWP* [34] 85.57 58.13 56.03 53.90

ECAS [14] 84.57 55.86 54.65 52.10
ECAS+TRAIN 85.26(↑ 0.69) 56.23(↑ 0.37) 54.77(↑ 0.12) 52.22(↑ 0.12)

TRADES* [36] 85.72 56.10 53.87 53.40
LAS-TRADES* [12] 85.24 57.07 55.45 54.15
TRADES + TRAIN 87.07(↑ 1.35) 58.51(↑ 2.41) 56.81(↑ 2.94) 54.70(↑ 1.30)

TRADES + LBGAT [6] 80.20 57.41 54.84 53.32
TRADES + LBGAT +TRAIN 86.69(↑ 6.49) 58.04(↑0.63) 56.75(↑ 1.91) 54.47(↑ 1.15)

Table 1: Results on CIFAR-10. “*” are the results directly quoted from LAS. The best and
second best results are bolded and underlined, respectively.

Defense Natural Acc. Robust Acc.
PGD-20 Acc. C&W-20 Acc. AA Acc.

Vanilla AT* [17] 60.89 31.69 30.10 27.86
SAT* [27] 62.82 27.17 27.32 24.57
AWP* [34] 60.38 33.86 31.12 28.86

ECAS [14] 64.60 35.41 33.39 29.55
ECAS+TRAIN 65.24(↑ 0.64) 35.83(↑ 0.42) 33.50(↑ 0.11) 30.69(↑ 1.14)

TRADES* [36] 58.61 28.66 27.05 25.94
LAS-TRADES* [12] 60.62 32.53 29.51 28.12
TRADES + TRAIN 67.47(↑ 8.86) 34.99(↑ 6.33) 31.61(↑ 4.56) 28.95(↑ 3.01)

TRADES + LBGAT* [6] 60.64 34.75 30.65 29.33
TRADES + LBGAT+ TRAIN 65.40(↑ 4.76) 35.46(↑ 0.71) 32.36(↑ 1.71) 30.17(↑ 0.84)

Table 2: Results on CIFAR-100. “*” are the results directly quoted from LAS. The best and
second best results are marked in bold and underline.

natural and adversarial data to enhance robust accuracy. Nonetheless, it is noteworthy that
this alignment process can unintentionally disrupt the integrity of natural feature topologies,
as it lacks any defensive measures to counteract this effect (refer to Figs. 2(b) and 4(b) in
the paper for visual representations of this phenomenon). As shown in Figs. 2(c) and 4(c),
applying the proposed TRAIN to TRADES could drive the cluster for each category to be
more compact, thereby preserving the topology more effectively.

5.2 Ablation Studies
In this section, we delve into TRAIN to study its effectiveness in different relation-preserving
methods We present a comparative analysis of our proposed method with alternative ap-
proaches: a metric learning approach called MCA [35] and two absolute relationship dis-
tillation methods, namely RKD [21] and CRD [28]. MCA applies a supervised contrastive
loss into adversarial training. RKD takes the absolute value of the cosine distance between
samples as the relationship as discussed in Sec. 4. CRD requires that a sample’s representation
in the student model be closer to its corresponding representation in the teacher model while

Methods Natural Acc Robust Acc
PGD-20 Acc C&W-20 Acc AA Acc

Vanilla AT [17] 60.44 28.06 27.85 24.81
MCA [35] 57.18 29.31 27.23 25.76
Vanilla AT + RKD [21] 64.00 28.32 27.92 24.92
Vanilla AT + CRD [28] 62.22 27.47 27.42 24.53
Vanilla AT + TRAIN′ 62.10 29.43 29.66 25.78
Vanilla AT + TRAIN 66.39 29.88 29.84 25.81

Table 3: Ablation results on different relation-preserving methods.
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Vanilla AT Vanilla AT + LBGAT Vanilla AT + TRAIN

821 848 849

TRADES TRADES + LBGAT TRADES + TRAIN

1,079 1,106 1,109

Table 4: Training time in second of an epoch on one RTX 3090 GPU.

being farther from the representations of other samples in the teacher model. TRAIN′ means
adversarial training will influence the standard models during training. Table 3 shows the
effectiveness of the relative relationship preservation TRAIN′ means adversarial training
will influence the standard models during training, and it is important to reduce the negative
influence of adversarial samples (comparison between TRAIN and TRAIN′). All the ablation
experiments are based on the CIFAR-100 dataset and combined with TRADES, and we
provide its other training details in the supplementary material.

Time complexity. Our method is based on batch computation, and its time complexity is
O(N(mz′K))+O(N(bz( f z′+ f z)+mz), where mz′ and mz is the number of neurons of the
adversarial model (48.32 M) and standard model (11.22 M), bz is the batch size (128), f z′

and f z is the feature size of the standard model (512) and adversarial model (640), and K
is the number of iterations for generating adversarial examples (10). For classic adversarial
training, its time complexity is O(N(mz′K). Since bz( f z′+ f z)+mz << mz′K, the additional
time overhead of our method is negligible.

Note that, the primary time-consuming factor in adversarial training algorithms lies in the
need for additional backpropagation during the generation of adversarial samples, whereas the
TRAIN algorithm does not incur any extra computational cost in this regard. Table 4 shows
the time statistics for training one epoch (with batch size equals 128) by different baselines.
It takes an additional 28 seconds when combined with Vanilia AT and 3% (30 seconds) on
TRADES for TRAIN, which is as fast as LBGAT. We also analyze the influence of batch
size, hyper-parameter λ , and model architectures in supplementary material.

6 Conclusion
Compared with standard training, adversarial training shows significant natural accuracy
degradation. Different from previous algorithms, we assume this is due to topology disruption
of natural features, and confirm it by empirical experiments. Based on that, we propose
Topology-pReserving Adversarial traINing (TRAIN). While improving the adversarial robust-
ness of the model, it preserves the topology of natural samples in the representation space of
the standard model. Our method has been rigorously validated through both quantitative and
qualitative experiments, demonstrating its effectiveness and reliability.
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