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1 Affine Transformation
Given the prepared parameter t, we follow Spatial Transformer Network [1] to achieve affine
transformation T on foreground objects, which can be further used for the final composition.
Note t = [tr, tx, ty] ∈ R3. tr is defined as the scale ratio for the foreground object, whose
span is within (0,1). The height and width of the transformed foreground region are then
h = trH and w = trW. On that basis, we define tx = x

W−w ∈ (0,1) and ty =
y

H−h ∈ (0,1) to
represent the relative vertical and horizontal locations of the foreground placement over the
background, where (x, y) denotes the background coordinate for the left top pixel point of
the scaled foreground region.

After a simple derivation, the parameter Θ of T can be formulated as

Θ(t) =
(

1/tr 0 (1−2tx)(1/tr −1)
0 1/tr (1−2ty)(1/tr −1)

)
. (1)

Subsequently, the transformed image It
f g = T (I f g;Θ) with the counterpart mask Mt

f g =
T (M f g;Θ) can be obtained.

In the end, the composite image Ic is generated as

Ic = Mt
f g ∗ It

f g +(1−Mt
f g)∗ Ibg. (2)

2 The Functionality of the Pyramid Pooling
The efficacy of the pyramid pooling method in our work lies in its ability to capture essen-
tial multi-scale contextual information, a crucial aspect for accurately placing objects within
their proper scale. Considering the significance of the relative size relationship between ob-
jects and the overall scene, understanding both foreground and background scales becomes
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imperative. This method allows our model to skillfully aggregate information across diverse
scales, facilitating the exploration of reasonable object scales within a background scene.

3 The Competing Methods
Since OP is still an emerging topic, to the best of our knowledge, only four latest benchmarks
are closely related to our work, including TERSE [4], PlaceNet [7], GracoNet [8], and CA-
GAN [6].

TERSE (CVPR, 2019)[4]: With a shared backbone, TERSE models heterogeneous fea-
tures for foreground and background via two separate branches, whose outputs are then
concatenated and regressed to predict the transformation parameters.

PlaceNet (ECCV, 2020)[7]: The core of PlaceNet lies in two independent encoders ex-
tracting features respectively from foreground and background. Then, the extracted features
are combined with different random vectors, thereby outputting various object placements
via a shared decoder network.

GracoNet (ECCV, 2022)[8]: GracoNet treats object placement task as a graph comple-
tion problem, which considers the background as multiple nodes with different locations and
the foreground as a unique node. In addition, the cross-attention module is employed be-
tween nodes of background and foreground. Finally, random vectors are also introduced to
enhance its diversity.

CA-GAN (ICME, 2023)[6]: CA-GAN proposes a coalescing attention module to extract
salient feature interaction between background and foreground. Assisted by a purely VAE-
based supervised path, it achieves state-of-the-art performance compared with other models.
Analogously, random vectors are used for better diversity.

The source codes of the competing methods are publicly available. For our CSANet,
the model is trained on a single RTX 3090 GPU with batch size 32 and epoch 18. The
discriminator in our work follows a similar architecture to [5].

4 Evaluation Metrics
User Study: 20 voluntary participants are invited to subjectively estimate the placement
results of all methods. Concretely, all methods generate composite images given the same
pairs of foreground and background, which are then delivered to the participants for the
decisions of compositing quality. The score of this metric for each method is obtained using
the average result on all test samples.

FID: Fréchet Inception Distance (FID) is born for measuring the similarity between
two group images, which is the most common measure for the performance evaluation of
generative adversarial networks. Analogously, we generate FID between one set of ground-
truth composite images of the OPA test set and the other set of composite images produced
by the competing methods.

LPIPS: LPIPS is a measure of perceptual similarity between two images. During the
inference stage, we first generate 10 composite images by sampling random vectors 10 times
given a pair of foreground and background. Afterwards, we pair-wisely compute LPIPS
from the 10 composite images. Then, the average LPIPS score on all test samples can be
generated for the final evaluation. On account of LPIPS exposing the difference between two
images, a larger LPIPS score demonstrates a better generation diversity.
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Table 1: Ablation study on loss functions

Methods Credibility Diversity
FID ↓ LPIPS ↑

Lu
adv+ Ls

adv 39.31 0.057
Lu

adv+ Ls
adv + Lbce 29.31 0.073

Lu
adv+ Ls

adv + Lbce+ Lkld 23.69 0.238
Lu

adv+ Ls
adv + Lbce+ Lkld+ Lrec 20.88 0.274

Accuracy: We extend the SimOPA [2] model to check the accuracy of object placement
generation results. The extended model functions as a binary classifier that distinguishes
between reasonable and unreasonable object placements. We define accuracy as the propor-
tion of the generated composite images that are classified as positive by the binary classifier
during inference.

5 Ablation Study

5.1 Different Loss Functions

Our loss function consists of several subassemblies, all of which collaboratively assist in
the training of our generator. By removing certain subassembles from the overall loss, the
ablation results are given in Table 1. As can be seen, with the participation of Lbce, the
diversity and credibility both increase sharply, demonstrating its effectiveness in facilitating a
better discriminator. The addition of Lkld and Lrec further brings considerable improvements,
manifesting their effectiveness in approximating the generated images with more details to
ground truth. Clearly, the joint collaboration of all the involved losses reveals the best result,
ensuring the superior performance of our proposal.

5.2 Degree of Supervision

Empirically, involving supervision mechanisms in originally unsupervised models often leads
to better performance. To validate this, the results caused by different degrees of supervision
are ablated in Table 2. Clearly, with the supervised path removed, the performance confronts
an evident decrease, which can be attributed to the “model collapse” issue of generative
adversarial network. This issue can be sharply ameliorated with the addition of binary clas-
sification loss Lbce. We consider the reason may lie in its power in enabling the discriminator
to latch the view of deeper data distribution so that it can be more distinguishable for images
generated by the generator. Moreover, a further performance promotion arises with the aid
of the complete supervised path, in which PCSSA and VAE collaboratively strive for prior
property extraction. Astonishingly, not only the model collapse issue has been addressed,
but also a great balance of credibility and diversity is obtained. Therefore, the involved su-
pervised path is assumed to be contributive in guiding the generator to learn more reasonable
and diverse object placements.
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Table 2: Ablation study on degree of supervision

Supervision Degree Credibility Diversity
FID ↓ LPIPS ↑

Pu 43.52 0.025
Pu +Lbce 30.79 0.143
Pu +Ps 20.88 0.274

Table 3: Choices of hyper-parameter Cp and kernel size k

Cp
Credibility Diversity

k
Credibility Diversity

FID ↓ LPIPS ↑ FID ↓ LPIPS ↑
256 21.29 0.257 7×7 24.62 0.221

1024 23.78 0.272 9×9 21.03 0.268
2048 27.64 0.279 13×13 23.44 0.254
512 20.88 0.274 11×11 20.88 0.274

6 Analysis of Hyper-parameters

6.1 Dimension Cp of Prior/Random Vectors

The imposed prior and random vectors on the generator play a positive role in diversity.
Empirically, a larger vector dimension Cp provides the higher possibility that leads to better
diversity, yet it would inevitably consume more hardware resources. To achieve a balance,
Table 3 lists the results from different selections of Cp in span [256, 2048]. As can be
seen, the values of LPIPS present an increasing trend consistently along with a larger Cp.
However, when Cp increases, FID initially increases, reaches a peak at 512, and then drops.
By considering both the credibility and diversity, we select Cp=512 in our experiments.

6.2 Kernel size k in DConv

Recent work [3] shows that it brings no performance gain but computational burden when
employing standard depthwise convolutions with kernel size larger than 9×9. Interestingly,
CSANet benefits more from the convolutions with larger kernels, i.e., 11×11. we analyzes
different choices of k in the range of [7×7, 11×11] as shown in Table 3. When k increases,
FID and LPIPS also increase and reach a peak at 11× 11, and then decrease. Accordingly,
we choose k = 11 in our implementation.

7 Limitation
Until recently, the mentioned dataset in our paper is the only released benchmark to evaluate
the object placement task. In our future work, we are committed to exploring and poten-
tially constructing additional datasets to further enhance the evaluation. Besides, another
limitation in our current object placement model lies in its sensitivity to lighting conditions.
The model may struggle to consistently produce visually coherent results when foreground
objects are placed in scenes with varying lighting intensities or directions. This limitation
arises due to the absence of a dedicated lighting adaptation mechanism, which could allow
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the model to adjust the appearance of foreground objects to match the lighting nuances of
the background. Incorporating a module that explicitly accounts for and adapts to different
lighting scenarios could substantially enhance the model’s robustness and its ability to seam-
lessly integrate foreground objects into diverse environments. Moreover, the current model
may encounter difficulties when tasked with placing objects in scenes with irregular perspec-
tives or complex spatial configurations. The absence of a perspective-aware module hampers
the model’s capacity to accurately consider depth and spatial relationships, leading to poten-
tial distortions in the final composite images. Addressing this limitation by incorporating
a module that comprehensively understands and adjusts for varying perspectives would be
instrumental in achieving more realistic and visually convincing object placements.

8 Societical Impacts
This task has the potential to revolutionize several industries, leading to tangible societal
changes. In the realm of advertising and design, for instance, graphic designers can leverage
this technology to seamlessly integrate products into visual compositions, saving time and al-
lowing for more creative exploration in marketing campaigns. In film and video production,
filmmakers can automate the placement of characters or objects within scenes, streamlining
the editing process and enhancing overall visual appeal. Moreover, in manufacturing, the
precise positioning of components during assembly processes can be automated, leading to
increased production efficiency and a reduction in errors. This has direct implications for
industries such as automotive manufacturing, where the proper placement of intricate parts
is critical to the functioning of the final product. In the context of virtual and augmented
reality, automatic foreground object placement can significantly enhance user experiences.
Virtual tourism applications can automatically position avatars or objects within virtual envi-
ronments, creating more realistic and immersive simulations. This, however, raises questions
about the authenticity of virtual experiences and the ethical considerations surrounding the
use of such technology in shaping digital realities.

9 Addtional Qualitative Comparison Results
More visual results are shown in Figs. 1 and 2 to further manifest the superiority of our
model in different aspects.

Figs. 1 and 2 provide a direct contrast in terms of the generation credibility. Two cases,
i.e., placing the same foreground object over different background scenes and placing vari-
ous foreground objects over an identical background scene, are respectively considered. It
is evident that CSANet shows outstanding robustness in placing specified foregrounds over
different background scenes. With the more credible locations and sizes, the performance
for positing various foreground objects over the given background scene is also better than
other competitors. We attribute this to the beneficial cooperation between PCSUA and PC-
SSA. On that basis, the generator is empowered to take multi-scale features and interactive
information into account, which accompanied by prior guidance leads to more reasonable
predictions.

Besides, we also provide Fig. 3 to reveal the generation diversity of several competing
methods. Note TERSE is omitted in this experiment since it is unable to produce multiple
placements given the same background-foreground pair. Again, provided the same environ-
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 CA-GAN GracoNet PlaceNet TERSECSANet (ours)

 CA-GAN GracoNet PlaceNet TERSECSANet (ours)

Figure 1: Visualization of object placement with the same foreground object and different
background scenes. The placed foreground objects are highlighted by the red outline.

ment, our proposal shows more possible placements with lossless credibility. For example,
the sailboat predicted by our proposal is posited in various directions surrounding the surfing
guy, while the placements of all other methods are relatively restricted.
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 CA-GAN GracoNet PlaceNet TERSECSANet (ours)

Figure 2: Visualization of object placement with the same background scene and different
foreground objects. The placed foreground objects are highlighted by the red outline.
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  CA-GAN

GracoNet

PlaceNet

  CA-GAN

GracoNet

PlaceNet

CSANet (ours)

CSANet (ours)

Figure 3: Comparisons of placement diversity by sampling different random vectors.
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