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Abstract

Recent advancements in semantic segmentation for 3D indoor scenes have yielded
impressive results using large-scale annotated data. However, existing methods operate
under the assumption that training and testing data share the same distribution, resulting
in performance degradation when evaluated on out-of-distribution scenes. To address
the high annotation cost and performance degradation, we introduce a synthetic-to-real
domain generalization setting for this task, which trains a robust model on synthetic do-
mains and evaluates its performance on unseen real-world target domains. The domain
shift between synthetic and real-world point cloud data mainly lies in the different lay-
outs and point patterns. To address these problems, we first propose a clustering instance
mix (CINMix) augmentation technique to diversify the layouts of the source data. In
addition, we augment the point patterns of the source data and introduce non-parametric
multi-prototypes to ameliorate the intra-class variance enlarged by the augmented point
patterns. The multi-prototypes can model the intra-class variance and rectify the global
classifier in both training and inference stages. Experiments on the synthetic-to-real
benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribu-
tion gap and thus improve the generalization ability on real-world datasets.

1 Introduction
Semantic segmentation of 3D indoor point clouds is a fundamental task for scene understand-
ing, with significant potential for real-world applications such as robotics [1] and building
information management [30]. Recent advances in deep neural networks and abundant an-
notated data have led to highly successful 3D semantic segmentation models [23, 24, 29]
under fully-supervised settings , achieving remarkable performance on several benchmark
datasets [2, 7]. However, these models typically suffer from performance degradation when
evaluated on data with different distributions from the training data. The distribution shift
between training and testing data mainly lies in the variations in indoor scene layouts and
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Figure 1: Distribution gap between the synthetic source ((a) 3D-FRONT) and real-world target ((b)
ScanNet and (c) S3DIS) data. The distribution gap mainly lies in different layouts and point patterns,
which exacerbate the intra-class variance.

point cloud patterns caused by differences in 3D data capture devices and procedures. As a
result, the performance of modern 3D semantic segmentation methods is not guaranteed with
the existence of domain shift, which is inevitable in real-world applications. Moreover, ac-
quiring diverse annotated data for training these models is costly, hindering the development
of highly generalizable models.

In view of the performance degradation and heavy annotation cost of 3D indoor point
clouds, unsupervised domain adaptation (UDA) is investigated in 3D indoor scenes [8],
which requires the labeled synthetic source data and unlabeled real-world target data. How-
ever, such setting still focuses on the testing data in the same distribution as the target real-
world data, and the collection of real-world data is also difficult. Thus, we first introduce the
synthetic-to-real domain generalization for 3D indoor point cloud semantic segmentation
(DG-Indoor-Seg), which only leverages one synthetic dataset to train a robust model that
can generalize well to various testing environments in the real-world. While domain gener-
alized semantic segmentation has been studied in 2D driving scenes [38, 40] in recent years,
where domain shift is mainly caused by varying weather, time, and conditions in different
streets, our work focuses on the 3D indoor scenarios with different domain shift. As shown
in Fig. 1, in contrast to the clean and ordered layout of synthetic 3D scenes from 3D-FRONT
dataset [10], real-world 3D scenes from ScanNet [7] and S3DIS [2] datasets are character-
ized by cluttered layouts and complex object-furniture relationships. Additionally, the point
clouds of real scenes are relatively sparse and noisy, with severe occlusions compared to
synthetic point clouds.

Drawing on our observations of the two types of domain shift in 3D indoor point cloud
semantic segmentation, we address the challenge through a two-pronged approach: diver-
sifying the synthetic layouts and investigating the shift of feature representations caused
by point pattern augmentation. While 2D domain generalization methods [21, 27], e.g.,
patch [33] or class [20] mixing, have proven effective in improving generalization ability
in driving scenes, these techniques may not work as well for 3D point clouds, which are
spatially irregular with varying sizes. Recent works [8, 19] have explored 3D mixing tech-
niques using entire scenes or cuboids for fully-supervised learning and domain adaptation.
Nevertheless, these methods can result in unrealistic augmentations that do not benefit out-
of-distribution data or may even deteriorate domain generalization performance. To address
this limitation, we propose the Clustering Instance Mix (CINMix) technique, which mixes
object instances from different scenes under rational geometry constraints to generate diverse
and realistic scenes. Due to the unavailability of instance-level labels in semantic segmenta-
tion, we apply density-based clustering on each class to roughly separate instances within a
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class. After that, multiple instances are sampled and placed in the free location on the floor
of an arbitrary scene. Through CINMix, we can generate more source scenes with diverse
and cluttered layouts that improve the robustness of our method.

Furthermore, to address the domain shift caused by different point patterns, we introduce
simulated noise and occlusion augmentation to the training data following the approach in
[8]. As seen in the real scenes in Fig. 1, noise and occlusion alter the geometrical shape
of objects. Since 3D semantic segmentation heavily relies on geometrical information, geo-
metrical alteration increases the intra-class variance of the source domain. With the enlarged
intra-class variance, the original global classifier that learns a single weight vector for each
class may become inadequate in 3D indoor point cloud semantic segmentation. To miti-
gate this issue, we propose a non-parametric multi-prototypes approach that represents each
class with multiple prototypes. This encourages the model to discover diverse and discrim-
inative patterns within each class and optimize the mining of instance-specific information.
The multi-prototypes are obtained through clustering, and then updated by moving average.
The update process is formulated as the optimal transport problem to uniformly update all
the prototypes. During training, the multi-prototypes are used as a non-parametric classifier
containing rich intra-class information. During inference, the well-learned multi-prototypes
can be used to rectify model predictions from the global classifier by leveraging their en-
coded instance-specific information.

Our main contributions can be summarized as follows:

• We propose a practical yet challenging setting of domain generalized 3D indoor point
cloud semantic segmentation (DG-Indoor-Seg), which trains a robust model on a syn-
thetic source dataset and is able to segment point clouds from other real-world datasets.

• We propose a novel data augmentation technique, i.e., clustering instance mix (CIN-
Mix), for synthetic-to-real DG-Indoor-Seg. CINMix can generate realistic scenes with
complex and cluttered layouts for the source data to narrow the layout domain shift.

• We propose a non-parametric multi-prototypes based classifier to deal with the intra-
class variance exacerbated by the point pattern augmentation. The multi-prototypes
can be used in both training and inference stages to rectify the model.

2 Related Work
3D Indoor Point Cloud Semantic Segmentation. In the deep learning era, point-based [23,
24, 29] and voxel-based [6, 11, 25] deep neural networks have achieved significant perfor-
mance under the supervision of fully annotated data. Considering the difficulties in anno-
tating point clouds, semi-supervised [4, 13] and few-shot [34, 39] settings have drawn more
attention in recent years. More recently, Ding et al. [8] investigate the domain adaptive se-
mantic segmentation in 3D indoor scenes, where labeled source data and unlabeled target
data are used to learn a model that can perform well on the target testing data. Different
from previous works, in this paper, we first introduce the practical yet challenging domain
generalization setting to 3D indoor point cloud semantic segmentation.
Domain Generalization. To tackle the performance degradation in the different domains,
domain generalization [15, 22, 35, 36, 37, 40] is widely explored in the community, which
learns a robust model with one or multiple source domain(s), aiming to perform well on
unseen domains. In recent years, domain generalized semantic segmentation [5, 32, 36, 37]
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Figure 2: The overall framework of our model for DG-Indoor-Seg. During training, CINMix is first
leveraged to generate diverse source samples, and then the model is trained with these samples via the
standard cross entropy loss and a prototypical similarity loss based on the momentum-updated multi-
prototypes. During inference, the multi-prototypes are used to rectify the model prediction.

in 2D driving scenes has been studied, where the domain shift lies in the changeable en-
vironments and styles. Briefly, one mainstream of these works focuses on designing style-
invariant modules, such as whitening [5] and instance normalization [22]. Another main-
stream engages in diversifying the source samples with style augmentation [37, 40] and
image randomization [12, 32]. More recently, a pioneer work [14] investigates DG in 3D
driving scenes, where the distribution shift mainly lies in different LiDAR sensor config-
urations. Different from previous works on driving scenes, we study domain generalized
semantic segmentation on 3D indoor point clouds, where the domain shift lies in the point
patterns and layouts.
Data Augmentation for Semantic Segmentation. In addition to standard transformations,
such as geometry transformation and color jitter, many advanced data augmentation tech-
niques can improve both in-distribution and out-of-distribution performance. CutMix [33]
crops a patch from one sample and mixes it with another sample, which can improve the
performance of both semantic segmentation and image classification. ClassMix [20] is pro-
posed for semi-supervised semantic segmentation, which takes pixels of several classes in
one image to another one. As for 3D point clouds, Mix3D [19] directly concatenates two
samples to train the semantic segmentation model. Cuboid Mixing [8] is designed for do-
main adaptive 3D point cloud semantic segmentation, which splits each scene into several
cuboids and mixes the cuboids from source and target domains. In this paper, we propose
the CINMix to generate diverse and realistic layouts within the source domain to overcome
the domain shift regarding layout change.

3 Methodology
Problem Definition. Synthetic-to-real domain generalization (DG) focuses on training a
robust model with one labeled synthetic domain S, where the model is expected to perform
well on unseen domains {T1,T2, · · ·} of different real-world distributions. The source and
target domains share the same label space (NC categories).

3.1 Overview

As illustrated in the introduction, the domain gap mainly lies in the different layouts and
point patterns. To this end, we propose the Clustering INstance Mix (CINMix) to diversify
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(a) Vendor scene (b) Thing class (c) Instances within the class

Figure 3: Visualization of one thing class (i.e.,
chair) and its clustered instance groups after
density-based class clustering.

(a) Client Scene (b) Target Instance (c) Floor Map (d) Available Location (e) Selected Location

Figure 4: Procedures of geometry constrained
mixing.

source layouts and non-parametric multi-prototypes to address the intra-class variance ex-
acerbated by point pattern augmentations. The overall framework of our proposed method
is shown in Fig. 2. Specifically, we randomly select the point clouds of two scenes during
training, and consider one point cloud scene as vendor scene (to sample instances from it)
while treating the other one as client scene (to insert the sampled instances into it). The
thing classes of the vendor scene are clustered into several groups, and then the available
groups are mixed to the client point cloud scene subjecting to the geometry constraints. Af-
ter the CINMix step, the mixed sample is augmented with virtual scan simulation [8] and
standard geometry augmentation techniques. Then it is fed into the model that consists of a
feature encoder and a parametric classifier to generate its prediction, which is supervised by
the ground truth via the standard cross entropy loss. In addition, we utilize non-parametric
multi-prototypes to compute a prototypical similarity loss as the additional supervision. The
non-parametric multi-prototypes are used to model the intra-class variance and is updated
by moving average. During inference, the multi-prototypes are used to rectify the prediction
from the parametric classifier. With the help of CINMix and multi-prototypes, our model
can deal with various unseen scenes in the real world.

3.2 Clustering Instance Mix

Considering the irregular and unordered attributes of point clouds, we propose the CINMix
to generate diverse and realistic source scenes under geometry constraints. CINMix includes
two steps: the density-based class clustering and geometry constrained mixing.
Density-based Class Clustering. 2D based ClassMix [20] cannot be used since one class
in the 3D space may not be constrained in a fixed size range like that in the 2D images.
For example, when putting the “sofa” class in a living room into another kid room, directly
mixing them can generate unrealistic results since the living rooms are commonly larger and
the sofas can spread across the room. As shown in previous works [18, 26, 28], the geom-
etry is much easier to be controlled when the instance labels are provided. In addition, the
thing class, e.g., chair and table, can be easily separated into different parts by density-based
clustering in 3D indoor scenes. The clustering parts can contain one instance or multiple
nearby instances, but each part is within a relatively small scale, which can be mixed into
other scenes. Therefore, we use DBSCAN [9] for each thing class in the vendor scene to get
one or multiple instances within a class (Fig. 3).
Geometry Constrained Mixing. Given the clustering instances, where to fuse them into
the client scene remains a problem. Since the point clouds of vendor and client scenes are
not aligned, directly concatenating them may lead to unrealistic results. To this end, we
introduce two major geometry constraints for the mixing: the mixed instances should be (1)
on the floor, and (2) have no overlap with the existing classes in the client scene. The overall
mixing procedures are shown in Fig. 4. First, a non-class floor map is obtained from the
client scene. Then, erosion is applied to the floor map by treating the shape of the clustering
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instance as the kernel size. Finally, the clustering instance is inserted into one of the available
locations randomly. Note that we mix multiple clustering instances to one client scene and
apply random rotation along z axis for each instance to improve the diversity of our CINMix
augmentation.

3.3 Non-parametric Multi-prototypes

Different point patterns, represented by noise and occlusion, is another severe domain shift
type limiting the generalization ability. We use virtual scan simulation [8] to add noise
and occlusion into the synthetic scenes, which can augment the point patterns of these
scenes. However, the addition of the noise and occlusion leads the synthetic data to have
a larger intra-class variance that is similar to the variance of the complex real-world data
(see Fig. 1). To tackle the enlarged intra-class variance, we introduce the non-parametric
multi-prototypes. These multi-prototypes can encourage the model to discover intra-class
discriminative patterns and optimize the mining of the instance-specific information.
Multi-prototypes Initialization. The multi-prototypes are initialized by clustering the fea-
tures of source data. Specifically, we first calculate the mean feature of each class c for each
augmented source sample xi:

f̄ i
c =

∑
n
j=1 f (xi

j)∗1
(

yi
j == c

)
∑

n
j=11

(
yi

j == c
) , (1)

where n denotes the number of points in xi. f (·) is the feature extractor and yi
j denotes the

label for point xi
j Given all the class-wise features in the source domain, we cluster features of

each class into K clusters and get the K cluster centroids as the multi-prototypes Pc ∈RK×D.
K-means++ [3] is adopted in this paper.

Pc = KPP([ f̄ 1
c , f̄ 2

c , · · · , f̄ Ns
c ],K), (2)

where KPP denotes the K-means++ clustering algorithm and K is the number of clusters. Ns
denotes the number of samples in the source data.
Momentum Update via Optimal Transport. Since feature representations are changing
along with the training, the initialized multi-prototypes should be updated for accurate rep-
resentations. Intuitively, each prototype in multi-prototypes can be updated by the feature(s)
that are closest to the prototype. However, this might lead to a degenerate solution that
only one prototype is updated when all features are close to this specific prototype. Inspired
by [31, 41], we adopt the solution of optimal transport to split the features uniformly to K
prototypes.
Prototypical Similarity Loss. Given the multi-prototypes Pc ∈ RK×D for class c, we define
the probability of one point x j belonging to the class c as the maximum similarity to the
multi-prototypes:

s(x j,c) = max
(

f (x j) ·P⊤
c

)
. (3)

Instead of the global representation for each class, s(x j,c) can model the most similar
representation of the same class and the most confusing representation from other classes.
Optimizing over such probability can force the model to discover intra-class discriminative
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patterns and support the learning of instance-specific details. Consequently, we define the
prototypical similarity loss as:

Lproto(x,y) =−1
n

n

∑
j=1

y j log
exp(s(x j,c j))

∑
NC
k=1 exp(s(x j,ck))

, (4)

where n and NC denote the number of point clouds in x and the number of classes, respec-
tively.
Prediction Rectification. Compared with the global classifier, the non-parametric multi-
prototypes contain more intra-class discriminative patterns, which can serve as the rectifica-
tion for the model prediction to alleviate the instance-specific impact. For example, armchair
may be closer to the unified representation of sofa instead of chair, which may lead to an in-
correct prediction from the global classifier. However, one of the multi-prototypes of the
chair can represent the armchair, and integrating such information can rectify the result.
Thus, we leverage the similarity to the multi-prototypes as the weight to rectify the global
classifier prediction. The weight is obtained by:

w(x j,c) =
exp(s(x j,c))

∑
NC
k=1 exp(s(x j,ck))

. (5)

Then the model prediction of the global classifier Φ is rectified by w(x j,c):

p(x j,c) = w(x j,c)∗Φ( f (x j),c) , (6)

where p(x j,c) is the rectified prediction for the point x j.
Training Objective Equipped with the clustering instance mix and multi-prototypes, the
model is optimized by the combination of the cross entropy loss over the global classifier
and the proposed prototypical similarity loss:

L= LCE(x,y)+Lproto(x,y). (7)

4 Experiments

4.1 Experimental Setup
Datasets. We conduct experiments on the synthetic-to-real domain generalization setting.
The synthetic dataset 3D-FRONT [10] is leveraged as the training data, and the model is
evaluated on two real-world datasets, i.e. ScanNet [7] and S3DIS [2]. 3D-FRONT [10] is a
large-scale dataset of 3D indoor scenes, containing 18,968 rooms with 13,151 3D furniture
objects. Following [8], 4,995 rooms from 3D-FRONT [10] are adopted as the training data.
For the real-world target domains, ScanNet [7] is a large-scale real-world dataset for point
cloud scene understanding, containing 1,201 training, 312 validation, and 100 testing scans.
S3DIS [2] is a real-world 3D semantic segmentation dataset with 271 scenes from 6 areas.
Following [8, 23], 68 samples in the fifth area are used as the validation data.
Evaluation Metric. We use eight shared categories across the three datasets for training and
evaluation, and we adopt the mean Intersection-over-Union (mIoU) over the eight categories
to evaluate the model performance.
Implementation Details. Following [8], we adopt sparse-convolution-based U-Net model [11]
as our backbone. We use AdamW [17] optimizer with an initial learning rate 6× 10−4 and

Citation
Citation
{Fu, Cai, Gao, Zhang, Wang, Li, Zeng, Sun, Jia, Zhao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Dai, Chang, Savva, Halber, Funkhouser, and Nie{T1ss }ner} 2017

Citation
Citation
{Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, and Savarese} 2016

Citation
Citation
{Fu, Cai, Gao, Zhang, Wang, Li, Zeng, Sun, Jia, Zhao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Ding, Yang, Jiang, and Qi} 2022

Citation
Citation
{Fu, Cai, Gao, Zhang, Wang, Li, Zeng, Sun, Jia, Zhao, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Dai, Chang, Savva, Halber, Funkhouser, and Nie{T1ss }ner} 2017

Citation
Citation
{Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, and Savarese} 2016

Citation
Citation
{Ding, Yang, Jiang, and Qi} 2022

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017

Citation
Citation
{Ding, Yang, Jiang, and Qi} 2022

Citation
Citation
{Graham, Engelcke, and Van Derprotect unhbox voidb@x protect penalty @M  {}Maaten} 2018

Citation
Citation
{Loshchilov and Hutter} 2019



8 ZHAO ET AL.: DG SEMANTIC SEGMENTATION FOR 3D INDOOR SCENE

Table 1: Domain generalization results on 3D-FRONT → ScanNet & S3DIS benchmark.

Target Method wall floor chair sofa table door wind. bksf. mIoU

Sc
an

N
et

Source Only 70.24 86.41 61.53 31.90 50.95 6.60 3.02 31.93 42.82
ClassMix [20] 68.52 80.54 52.40 42.67 28.94 7.20 8.36 39.28 40.99
Cuboid Mixing [8] 73.02 89.04 62.56 36.87 45.89 7.22 0.36 37.59 44.07
Mix3D [19] 71.87 87.23 60.68 48.15 43.15 8.56 0.65 27.83 43.52
VSS [8] 68.80 89.05 57.91 45.49 47.22 8.47 10.09 36.42 45.43
DODA-S [8] 71.65 89.23 60.72 41.78 48.13 8.33 6.76 39.48 45.76
Ours 73.42 88.07 62.72 43.56 52.14 7.71 14.20 44.44 48.28

S3
D

IS

Source Only 68.94 92.63 50.86 16.61 47.50 9.00 0.87 22.74 38.64
ClassMix [20] 70.53 93.68 56.04 7.89 34.25 10.51 0.20 35.52 38.58
Cuboid Mixing [8] 69.18 88.41 56.83 9.43 34.36 11.47 0.23 24.96 36.86
Mix3D [19] 70.73 92.64 53.17 9.04 50.51 7.97 1.17 25.88 38.89
VSS [8] 69.71 94.52 58.11 26.43 40.83 21.16 23.14 49.24 47.89
DODA-S [8] 71.33 92.11 59.32 20.02 36.24 13.47 7.63 38.75 42.36
Ours 76.00 94.66 66.22 17.79 53.20 21.12 29.84 51.14 51.25

Table 2: Ablation studies on CINMix and non-parametric multi-prototypes. “Para.” denotes the para-
metric classifier. “N-Para. T” and “N-Para. I” denote using the non-parametric multi-prototypes in
training and inference stages, respectively.

No. CINMix Para. N-Para. T N-Para. I ScanNet S3DIS Mean

1 ✗ ✓ ✗ ✗ 45.43 47.89 46.66

2 ✓ ✓ ✗ ✗ 46.23 48.92 47.58
3 ✗ ✓ ✓ ✗ 46.63 48.29 47.46
4 ✗ ✓ ✓ ✓ 46.78 49.06 47.92
5 ✓ ✗ ✓ ✗ 46.88 46.26 46.57
6 ✓ ✓ ✓ ✗ 48.00 50.02 49.01
7 ✓ ✓ ✓ ✓ 48.28 51.25 49.77

weight decay 0.01 to optimize the model. The polynomial decay [16] with a power of 0.9
is used as the learning rate scheduler. All models are trained for 100 epochs with a batch
size of 32. The number of multi-prototypes K, the smoothness parameter λ , and the up-
date momentum m are set to 3, 20, and 0.999, respectively. For the DBSCAN algorithm in
density-based class clustering, we set the maximum distance between neighbor points to 0.2
and the number of points in a neighborhood to 100.
Baselines. Previous works [5, 37, 40] on DG-Seg in 2D images consider the domain shift
as image style change. Hence, these works cannot be applied to 3D point clouds. As we are
the first work focusing on domain generalized semantic segmentation in 3D indoor scenes,
we compare our method with the model trained only with cross entropy loss on the source
data (source only). In addition, since data augmentation techniques are commonly adopted
to improve the generalization ability, we also compare our framework with point cloud based
augmentation methods, including ClassMix [20], Cuboid Mixing [8], Mix3D [19], VSS [8]
and DODA-S [8].

4.2 Synthetic-to-Real Domain Generalization

In Tab. 1, we compare our model with baselines on the 3D-FRONT → ScanNet & S3DIS
benchmark. We make the following observations. First, on the ScanNet dataset, our model
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outperforms the source only model on all the categories and achieves the mIoU of 48.28%,
yielding an improvement of 4.76% and 2.85% over the Mix3D and VSS models respectively.
Second, our model achieves the best performance on 3 thing classes (chair, sofa, table, and
bookshelf) on the ScanNet dataset, demonstrating the effectiveness of mixing the instances
of thing classes and mining the intra-class variance. Third, our model also achieves the state-
of-the-art performance on S3DIS dataset. In addition, most of previous data augmentation
methods fail to gain improvement on S3DIS dataset, while our model obtains a mIoU of
51.25%, outperforming the source only baseline by 12.61%.

4.3 Ablation Studies
CINMix. CINMix is proposed to diversify the layouts in the source domain by extracting
instances from the vendor scene and mixing them to the client scene under the two geometry
constraints. The instances are obtained from the density-based clustering on the points of
thing classes. As shown in the 2nd row of Tab. 2, CINMix can improve the performance
on ScanNet and S3DIS datasets by 0.8% and 1.03%, respectively, which demonstrates the
effectiveness of CINMix in generating diverse and realistic scenes.
Non-parametric Multi-prototypes. We propose non-parametric multi-prototypes to ad-
dress the intra-class variance in the 3D indoor scenes. The proposed multi-prototypes are
used in both training and inference stages to learn instance-specific details and rectify the
model prediction, respectively. First, comparing the 3rd row with the baseline model, intro-
ducing non-parametric multi-prototypes in the training stage can improve the performance
on both of the target datasets, yielding an improvement of 0.8% on the average mIoU. Sec-
ond, we compare using the parametric and non-parametric classifiers separately in the 2nd
and 5th rows of Tab. 2. The non-parametric classifier can improve the performance on Scan-
Net but achieves worse performance than the parametric one on S3DIS. We conjecture that
the test set of S3DIS is less complex than that of ScanNet, and thus the target data may be
biased to some of the prototypes without the guidance of global representation, leading to
incorrect predictions. Third, when combining the parametric and non-parametric classifiers,
the model can gain consistent improvement no matter using CINMix or not. In addition, the
improvement of the combined classifiers is more significant when CINMix is leveraged. This
is because CINMix generates more diverse scenes, which can boost the capacity of the non-
parametric classifier. Finally, the non-parametric multi-prototypes can also be used in the
inference stage to rectify the model prediction by alleviating the impact of instance-specific
information. As shown in the last row of Tab. 2, the rectification can slightly improve the per-
formance on ScanNet by 0.28% in mIoU but gains great improvement on S3DIS by 1.23%
in mIoU. The reason is that with the guidance of global representation, the multi-prototypes
can better address instance-specific details of S3DIS instead of biased to some specific pro-
totypes. All the results demonstrate the effectiveness of non-parametric multi-prototypes in
ameliorating the intra-class variance and improving the generalization ability.

Table 3: Comparison with different augmentation.

Augmentation ScanNet S3DIS Mean

VSS+N-Para. 46.78 49.06 47.92
+ClassMix [20] 46.63 45.74 46.19
+Cuboid Mixing [8] 47.74 45.58 46.66
+Mix3D [19] 47.99 48.22 48.11
+CINMix 48.28 51.25 49.77

Table 4: Different degree of clustering constraints.

Degree of constraints ScanNet S3DIS Mean

Strict 45.47 47.41 46.44
Loose 48.11 50.92 49.52
Appropriate 48.28 51.25 49.77
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(b) Loose Constraints(a) Strict Constraints (c) Appropriate Constraints
Figure 5: Visualization of different clustering constraints. The two beds are in one room scene.

5 Evaluation
Data Augmentation Techniques. To verify the effectiveness of CINMix, we further com-
pare different data augmentation techniques when equipped with our framework, i.e., using
VSS and non-parametric classifier (VSS+N-Para.). In Tab. 3, compared with the model with-
out additional augmentation, all four augmentation techniques can improve the performance
on ScanNet. However, ClassMix, Cuboid Mixing and Mix3D deteriorate the performance
on S3DIS, since the complete scenes in S3DIS suffer from the missing and incomplete point
cloud data introduced by these augmentations. Compared with the above methods, our CIN-
Mix can generate diverse and realistic source samples, improving the performance on both
datasets by a large margin.
Clustering Constraints Analysis. We empirically set the maximum distance Mp = 0.2
and neighborhood points number Np = 100 of DBSCAN [9] to generate complete instances
within one class. To analyze the sensitivity of the two hyper-parameters, we visualize the
clustering results under strict (Np = 300), loose (Mp = 0.5) and appropriate constraints in
Fig. 5, where we use each color denotes one cluster. Large object can be separated into
several parts under strict constraints and some parts are even viewed as invalid points (white
points), while multiple instances are clustered together under loose constraints (two beds are
viewed as one instance). However, as illustrated in Tab. 4, since the instances of one thing
class are commonly not quite close, leveraging relatively loose constraints do not have strong
influence on the model performance. In contrast, strict constraints can readily separate one
instances into multiple meaningless parts, and utilizing such parts to represent this class can
drastically impair the performance.

6 Conclusion
In this paper, we introduce a new setting of domain generalized semantic segmentation in 3D
indoor scenes, which trains a robust model with synthetic data and aims at segmenting real-
world data from unseen domains. By investigating this challenging but practical problem,
we identify the primary domain gap between synthetic and real-world data as differences in
layouts and point patterns. To address the domain shift, we propose two novel techniques:
clustering instance mix augmentation to diversify the source layouts, and non-parametric
multi-prototypes to handle the enlarged intra-class variance resulting from augmented point
patterns. Our proposed method demonstrates significant generalization ability and outper-
forms baseline models by a large margin on two real-world benchmark datasets.
Acknowledgements Na Zhao was a visitor at NUS when this work was done. This work is
supported by the Agency for Science, Technology and Research (A*STAR) under its MTC
Programmatic Funds (Grant No. M23L7b0021).
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