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Abstract

In this paper, we address One-shot Test-Time Adaptation, which adapts a classifi-
cation model using only a given single unlabeled test image. All the existing methods
fine-tune the model so that the classification results are consistent for augmented views
of a given test image. However, each region of an image has different information;
some regions have rich class (object) information, while others express style information
essentially irrelevant to the class information. The existing approach based on the image-
level classification results is therefore inadequate. To address this problem, we propose a
novel One-shot Test-Time Adaptation method based on region-based entropy separation.
Specifically, our method aims to obtain style-invariant features by performing global en-
tropy maximization as well as local entropy minimization only on the regions with high
confidence values where the class information is considered to be strongly represented.
Experimental results on three public benchmark datasets show that the proposed method
outperforms the state-of-the-art One-shot Test-Time Adaptation methods. Code is avail-
able at: https://github.com/kodaikawamura/Region-basedTTA.

1 Introduction
While pre-trained Vision-Language Models (VLMs), such as CLIP [21] and ALIGN [12],
have demonstrated remarkable zero-shot classification performance on various downstream
tasks, their performance can be significantly improved by involving task-specific model
adaptation [9, 39]. Typical model adaptation methods assume that they are able to access
a large amount of downstream training data. However, collecting such a dataset is often
difficult in real-world scenarios. To address this problem, Test-Time Adaptation (TTA) has
collected much attention recently, where only a pre-trained model and unlabeled test data
are available for adaptation [1, 4, 14, 16, 29]. In this paper, we address a more challenging
but practical scenario, One-shot TTA (a.k.a. Test-Time Instance Adaptation or Single-Shot
Adaptation) of pre-trained VLMs [7, 24, 26]; the task is to adapt a pre-trained VLM classifier
such as CLIP [21] to a single unlabeled test image without assuming any other information
is available.
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Figure 1: Method overview. We propose region-based entropy minimization for One-shot
Test-Time Adaptation. More specifically, our method optimizes the text prompt by global
entropy maximization and local entropy minimization. Global entropy maximization is per-
formed by first transforming the input test image into style-emphasized one and then maxi-
mizing the entropy of the image-level prediction. Local entropy minimization first computes
patch-level predictions and then minimizes the entropy only for the high-confident patches.

From the pioneering work on One-shot TTA for VLMs [24], several approaches have
been proposed so far [7, 24, 26]. The key challenge is how to tune the model using only a
single unlabeled test sample. The common idea is to use random augmentation and unsuper-
vised loss functions; they first randomly generate multiple augmented views of the given test
image, and then fine-tune the model (or trainable prompt) by using those augmented views
and unsupervised loss functions, e.g., entropy minimization [7, 24, 26].

All the existing One-shot TTA methods rely solely on image-level information (e.g.,
image-level predictions or image-level loss functions) to perform adaptation. For example,
Test-Time Prompt Tuning (TPT) [24] first computes the confidence for each augmented im-
age and then minimizes the entropy of their average. However, this is likely to be suboptimal.
Image is a spatial medium – different regions may have different information, e.g., some re-
gions of an image may clearly depict a particular object but others may not and instead may
represent significant style information. Thus, using only image-level information cannot
properly reflect natural locality of images, leading to insufficient adaptation and possibly
undesirable degrading classification performance.

In this paper, we propose a novel region-based entropy separation method for One-shot
TTA. More specifically, our method simultaneously performs global entropy maximization
and local entropy minimization, aiming to obtain classification performance for locally rep-
resented class (object) information while avoiding adaptation to misleading style information
that appears throughout the entire image. Experimental results with three public benchmark
datasets demonstrate that our method successfully outperforms the state-of-the-art One-shot
TTA methods.
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Setting One-shot? Sourse data Available? Target data available?
Domain Adaptation - ✓ ✓

Domain Generalization - ✓ -
Test-Time Adaptation - - ✓

One-shot TTA ✓ - ✓

Table 1: Comparison of model adaptation problems. In this paper, we address One-shot
TTA, which is a variant of Test-Time Adaptation where only a single test sample from target
data is available for adaptation. Our method is designed for One-shot TTA, hence does
not require any source data or multiple test samples, unlike most existing model adaptation
methods.

Our contributions in this paper can be summarized as follows:

• We propose region-based entropy separation for the One-shot TTA problem, which
performs both global entropy maximization and local entropy minimization for effec-
tive model adaptation.

• Our method outperforms the state-of-the-art One-shot TTA methods.

2 Related Work

Model Adaptation for Large Pre-trained Models. While large pre-trained models have
shown the promising zero-shot generalization performance, their performance can be further
improved by adapting the models to target downstream tasks [9, 35, 38, 39]. Adapter-based
adaptation such as CLIP-Adapter [9] and Tip-Adapter [35] achieves adaptation by adding
extra parameters to the original model and updating only those parameters. Prompt tuning
such as CoOp [39] and CoCoOp [38] does not alter the architecture of the model at all,
but instead updates only the learnable tokens for adaptation. In this paper, we rely on the
framework of prompt tuning and address the problem of One-shot TTA.
Test-Time Adaptation. Among the typical variants of model adaptation problems (Table 1),
Test-Time Adaptation (TTA) [2, 11, 14, 23], which requires adapting models to test samples
on the fly, is a challenging and practical setting when we have no access to training samples.
One key challenge in this setting is designing an efficient test-time objective. TENT [29] is
a pioneering method that introduces entropy minimization as a test-time objective. Entropy
minimization is widely used in many prior test-time adaptation methods [7, 8, 24, 34]. For
example, MEMO [34] adapts all parameters of a network model by minimizing the marginal
entropy of the model’s predictions across augmented images. Other prior works such as
TPT [24] and DiffTPT [7] optimize the trainable prompt of CLIP by minimizing the entropy
of predictions for randomly augmented views.

However, all of these existing works focus only on image-level prediction when they
optimize the model. There are different information in an image depending on the regions;
some regions have rich class information, while others express strong style information.
Therefore, only focusing on image-level prediction is insufficient as it overlooks the impor-
tance of different features in an image. To address this problem, our method aims to have a
look at local features of an image by leveraging CLIP’s local features.
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(a) Original (b) Transformed (c) Original (d) Transformed

Figure 2: Examples of transformed images. We show the style-emphasized images of
“Desk Lamp” from different domains in Office-Home: art and clipart. Our method applies
block shuffle and Gaussian blur to the original images to emphasize style information. The
number of grids for block shuffle is 4 in these transformed images.

3 Method

3.1 Background
Pre-trained VLMs, such as CLIP [21], consists of two encoders, the image encoder f and the
text encoder g. Given an image xxx, a visual feature fff = f (xxx) is obtained by the image encoder
f . The textual prompt can be expressed as ttt i for class i (e.g., ttt i=“a photo of a [class]”) which
is then passed on to the text encoder g. Given the prompt ttt i as an input, the text encoder
g outputs text features as gggi = g(ttt i). For zero-shot classification of CLIP, the prediction
probability is expressed as:

p(yi|xxx) =
exp(cos( fff ,gggi)/τ)

∑
K
j=1 exp(cos( fff ,ggg j)/τ)

, (1)

where cos( fff ,gggi) denotes cosine similarity for class i, and τ is the temperature parameter.
To improve the performance of CLIP, prompt tuning methods such as CoOp [39] have been
proposed [7, 24, 31, 32, 38, 39]. These methods optimize the trainable text prompts by
leveraging training data [31, 32, 38, 39] or test data [7, 24].

3.2 Method Overview
Although each region of an image has different information, existing methods only focus on
image-level classification results. Therefore, they cannot take account of local features that
have diverse attributes depending on the regions, which limits their performance. To tackle
this issue, we attempt to apply different learning methods based on the regions in an image.

Our approach is inspired by entropy separation [33], which is originally proposed for
universal domain adaptation. Entropy separation aims to distinct images of “known” and
“unknown” classes in an unsupervised manner by increasing (resp. decreasing) confidence of
the confident (resp. unconfident) image through entropy minimization (resp. maximization).

In our approach, we extend this idea to region-based entropy separation. The overview of
our method is shown in Figure 1. Specifically, our method attempts to obtain the representa-
tions insensitive to style information by decreasing the confidence for the global feature with
strong style information as well as increasing the confidence for the local features with rich
class information. To obtain the image with rich style information, our method leverages
the style-emphasizing transformation. Moreover, our method utilizes patch-level predictions
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Method Office-Home VLCS PACS Mean
Zero-shot CLIP [21] 82.30 82.40 96.10 86.93

TAF-Cal [36] 67.10 - 86.85 -
Xiao et al. [30] 72.05 - 84.13 -

TPT [24] 76.60 80.23 96.50 84.44
DiffTPT [7] 75.15 82.23 96.28 84.55

PromptStyler [5] 83.58 82.90 97.23 87.89
Ours (Bottom-K) 83.70 84.18 97.23 88.40

Ours (Thresholding) 83.73 84.13 97.23 88.38

Table 2: Main results. Accuracies of the model are listed. The highest accuracy is high-
lighted in bold, and the second highest accuracy is underlined. We test two region selection
methods for local entropy minimization: “Bottom-K” picks regions with the K smallest
predicted entropy, and “Thresholding” selects regions below a threshold τ . Our method out-
performs the state-of-the-art in all the datasets. Although PromptStyler is competitive with
our method, it has several limitations which is described in Sec.4.2.

Method Office-Home VLCS PACS
Local entropy maximization 82.13 82.68 96.34

Global entropy maximization 83.70 84.18 97.23

Table 3: Does local maximization work? The accuracies of the model when it employs
local maximization or global maximization are listed. Local maximization indicates that the
model maximizes the entropy of predictions for regions with high entropy. Global maximiza-
tion denotes that the model maximizes the entropy of predictions for the domain-emphasized
image. As we can see from the table above, our method shows much better performance
when it employs global entropy maximization rather than local entropy maximization.

to obtain the regions with rich class information by leveraging the value features of CLIP’s
image encoder.

3.3 Global Entropy Maximization

First, to obtain the style-invariant features, our method attempts to obtain the image with
rich style information by leveraging style-emphasizing transformation. Our method is based
on the assumption that class and style information in images are independent of each other.
Therefore, by transforming an image into “class-destructed” form, it is possible to obtain
style-variant and class-invariant representations [17]. To destruct class-variant features, we
focus on local structural information, such as object shapes and the interconnections between
its parts, that serves as vital representations of class in images. Our method disrupts these sig-
nificant clues by employing transformation that divides the original image into pixel blocks
and subsequently randomizing their positions [3, 17, 20]. Furthermore, we apply Gaussian
blur to obfuscate class information. Given that the style information is captured by abstracted
information such as the mean and the standard deviation [10], Gaussian blur does not affect
the style information but is able to disrupt class information. Examples of the transformation
is shown in Figure 2.

Our method then optimizes prompts by using the transformed images. To obtain style-
invariant features, the model needs to learn prompts so that style-emphasized images are not
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Original
image

Picked up
patches

Figure 3: Visualization of picked up patches. The original images and the regions that
the model picks up to minimize the entropy are shown. The patches that are not selected by
the model are colored in gray. We can see that the model correctly selects the regions that
possess strong class information.

classified to any class. Therefore, our model decreases the confidence of the prediction for
transformed images by maximizing entropy. Formally, the loss function for this is as follows:

Lglobal =−H(p), (2)

where H(·) is the entropy function and p denotes the prediction probabilities of the style-
emphasized images.

3.4 Local Entropy Minimization
Since we observe the regions that have rich class information in images, our method attempts
to increase the confidence for the regions with strong class information to retain this informa-
tion. To achieve this, our method picks up local regions that possess rich class information
from the original image by leveraging CLIP’s local features [13, 18, 19, 22, 25, 37, 40].

To obtain CLIP’s local features, we first project the visual feature fff ′i to the textual space
for each patch i ∈ I = {0,1,2, . . . ,H ×W −1}, where H and W are the height and width of
the CLIP’s feature map. We can formulate this as follows:

fff i = Proj(v( fff ′i)), (3)

where v is the value projection and Proj denotes the projections from the visual space to the
textual space. Our method uses projections that are inherent in CLIP, therefore they do not
require any additional training. Since obtained fff i has a rich local visual and textual align-
ment [13, 18, 19, 22, 25, 37, 40], our method leverages this to obtain patch-level predictions.
The classification prediction probability for each patch i is computed as

pi(y = m|xxx) = exp(cos( fff i,gggm)/τ)

∑
M
m′=1 exp(cos( fff i,gggm′)τ)

. (4)

To obtain the regions that possess rich class information, we select the patches with low
prediction entropy (i.e. high confidence). We employ two ways of selecting the patches
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(a) Number of grids (b) σ

Figure 4: Sensitivity to hyperparameters in style emphasizing transformation. The sen-
sitivity of the model to hyperparameters in style emphasizing transformation are shown. We
can see that 3 or more number of grid is effective to emphasize style information, and our
model shows stable performance within a wide range of σ .

with low prediction entropy: picking up patches with K lowest entropy or thresholding with
τ . Specifically, our method first computes the prediction entropy of each patch i ∈ I =
{0,1,2, . . . ,H ×W − 1}. In the first approach, it then selects K indices that have K lowest
prediction entropy. With selected K patch-level predictions, our method optimizes prompts
by minimizing the sum of K prediction entropy. This loss function is formulated as:

Llocal =
K

∑
j=1

H(p j), (5)

where H(·) is the entropy function and p j is the prediction probabilities for selected patches
j ∈ {1,2, . . . ,K}. In the second approach, our method selects patches with a prediction
entropy below a threshold τ . Formally, it selects patches j ∈ {1,2, . . . ,n} such that H(p j)≤
τ , and minimize the sum of n prediction entropy. In this case, the formulation is as follows:

Llocal =
n

∑
j=1

H(p j). (6)

3.5 Total Loss
The final objective can be formulated as:

L= Lglobal +λLlocal, (7)

where λ is a hyperparameter that balances two loss functions.

4 Experiments

4.1 Setup
Datasets. We evaluate our method on three public benchmark datasets, i.e., Office-Home [28],
VLCS [27], and PACS [15], which are widely used for domain adaptation/generalization.
Office-Home has 15,500 samples of 65 object classes from 4 domains (i.e., art, clipart,
product, and real-world). VLCS consists of 729 images of 5 classes from 4 domains (i.e.,
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+Lglobal
+Llocal

(Bottom-K)
+Llocal

(Thresholding) Office-Home VLCS PACS

- - - 82.30 82.40 96.10
✓ - - 83.60 84.09 97.18
- ✓ - 82.30 83.53 96.10
- - ✓ 82.40 83.17 96.23
✓ ✓ - 83.70 84.18 97.23
✓ - ✓ 83.73 84.13 97.23

Table 4: Ablation of loss functions. “Bottom-K” indicates picking up regions with K lowest
prediction entropy, and “Thresholding” denotes selecting regions with a prediction entropy
below a threshold τ when minimizing entropy. Although our method achieves improvement
only with Lglobal, by employing both of Lglobal and Llocal, it shows higher performance.

(a) λ (b) K (c) τ

Figure 5: Sensitivity to hyperparameters. The sensitivity of the model to hyperparameters
are shown. We can see that the model is not very sensitive to hyperparameters.

Caltech, LabelMe, SUN09, and VOC2007). PACS has 9,991 samples of 7 categories from 4
domains (i.e., photo, art-painting, cartoon, and sketch). We report the average results over
three runs using different random seeds. Since we focus on One-shot TTA in our experi-
ments, we use only a single unlabeled test sample.

Implementation Details. We initialize the prompt to “a photo of a [class]” and fine-tune the
four tokens corresponding to “a photo of a”, using the SGD with learning rate of 0.00008 for
Office-Home and PACS, and 0.00001 for VLCS. We use ViT-B/16 [6] as a backbone. We
consistently set the number and the threshold for picking up regions in entropy minimization
K = 80, τ = 1.0, and set the weight in loss function λ = 0.4. For style-emphasizing trans-
formation, we set hyperparameters as follows: the numbers of grids for block shuffle are 8
for Office-Home, 17 for VLCS and 3 for PACS, and kernel size and sigma for Gaussian blur
are (5,5) and σ ∼U(10,30) respectively.

Baselines. We compare our method with four groups of the state-of-the-art methods, namely;
(a) zero-shot CLIP, (b) TAF-Cal [36] and [30], the state-of-the-art One-Shot TTA methods,
not for VLMs, (c) TPT [24] and DiffTPT [7], the state-of-the-art One-Shot TTA methods
for VLMs, and (d) PromptStyler [5], the state-of-the-art source-free domain generalization
method. For fair comparisons, we employ ViT-B/16 for CLIP image encoder for all the
methods compared (except for those in (b)).
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Block shuffle Gaussian Blur Office-Home VLCS PACS
- - 76.00 81.30 93.80
✓ - 77.43 82.55 94.50
- ✓ 79.78 82.95 95.18
✓ ✓ 83.70 84.18 97.23

Table 5: Ablation of style-emphasizing transformation. Our method successfully empha-
size the style information by employing both of block shuffle and Gaussian blur. However,
employing either of them fails in emphasizing the style information, which leads to degra-
dation of the model.

4.2 Main Results

Comparative results are shown in Table 2. Our method outperforms all the baselines in all
the datasets. In particular, our method improves the state-of-the-art One-Shot TTA methods,
TPT and DiffTPT, by more than 7% in Office-Home, which shows clear significance of
our method. The only very recent domain generalization method, PromptStyler, is highly
competitive with our method; the benefit of our method is that we do not change anything of
the VLM-based classification framework, unlike PromptStyler that uses an additional linear
classifier. Moreover, PromptStyler has a limitation that it needs to fix the number of styles
beforehand.

4.3 Analysis

Does local entropy maximization work? Although our method applies entropy maximiza-
tion to obtain style-invariant features, it might seem more straightforward to employ local
entropy maximization (i.e., maximizing the entropy of predictions for regions with low con-
fidence) rather than global entropy maximization. However, as shown in Table 3, global
entropy maximization works much better than local entropy maximization. This is because
style-emphasizing transformation effectively emphasizes the style information and makes it
possible to obtain style-variant features.

Visualization of picked up patches. We show the visualization of patches that are selected
by the model in Figure 3. We can see that our model correctly picks up the regions with rich
class information.

Ablation of loss functions. We show the impact of Lglobal and Llocal in Table 4. As the
table shows, Lglobal itself achieves the performance improvement, but by incorporating both
of two loss functions, our method achieves higher performance.

Ablation of style-emphasizing transformation. In style-emphasizing transformation, we
use several techniques, such as block shuffle and Gaussian blur, to emphasize style informa-
tion. To evaluate the effect of the number of grids in block shuffle and σ for Gaussian blur,
we show the accuracy of the model for Office-Home when we change the number of grids
and σ in Figure 4. This evaluations shows that 3 or more number of grids for block shuffle
effectively emphasize the style information. Ablation studies on the components in the trans-
formation is shown in Table 5. As ablation studies show, by employing both block shuffle
and Gaussian blur, the transformation emphasizes style information effectively, which leads
to higher performance.
Sensitivity to hyperparameters. λ , K and τ are major hyperparameters to control the



10 KAWAMURA, YAMAGAMI, IRIE: REGION-BASED ENTROPY SEPARATION

impact of Llocal in Eq. (5). We evaluate the sensitivity to these hyperparameters in Figure 5.
We can see that the model shows stable performance within a wide range of hyperparameters.

5 Conclusions
We proposed a One-shot TTA method based on region-based entropy separation. Our method
jointly performs global entropy maximization to obtain style invariance and local entropy
minimization to improve adaptive classification ability. Experimental results showed that
our method outperformed the state-of-the-art One-shot TTA methods.
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