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Supplementary Materials

Architecture of Illumination Disentanglement Network
The detailed architecture of illumination disentanglement network is shown in Figure 9.
It is made up of six modules, including one convolution layer, four ResBlocks and one
activation layer. The first convolution layer calculates 16 feature maps with 7× 7 kernels.
The ResBlock is constructed by connecting ConnectUnit and ResidualUnit in series. The
ConnectUnit in the first ResBlock consists of a convolution layer that can calculate 32 feature
maps with 3×3 kernels. The ResidualUnit in the first ResBlock consists of two convolution
layer that also can calculate 32 feature maps with 3× 3 kernels. All the convolution layers
in the second ResBlock can calculate 64 feature maps with 3×3 kernels. Analogously, the
convolution layers in the third ResBlock can calculate 128 feature maps with 3×3 kernels.
The convolution layers in the last ResBlock calculate 6 feature maps with 3×3 kernels. We
use LeakyReLu to replace the conventional ReLu activation function in those four ResBlocks
for avoiding vanishing gradient problem. The Sigmoid activation layer is adopted finally to
avoid data overflow.
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Figure 9: Structure of illumination disentanglement network
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Figure 10: Structure of ConvMax, ConvNorm and Resblock in discriminators

Architecture of Global/Local Discriminator in DDFPN
The global discriminator is constructed for distinguishing reconstructed images from normal
exposure images. It consists of four ResBlocks and final output can be obtained through
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Figure 11: Structure of DDFPN based Illumination Brightening Network (We take the Mo-
bileNet pretrained backbone as an example): The detailed structures of those submodules
(ConvMax, ConvNorm and ResBlock) are shown in Supplementary Materials.
this four ResBlocks and fully connected layers. We replace the sigmoid function with the
least-square GAN[40] and the training loss of discriminator is:

JD = (DG (xr)−1)2 +DG (R⊗La)
2 + ∑

lr∈Pr

(DL (lr)−1)2 + ∑
la∈P

DL (la)
2

(15)

where Pr stands for the set of image patches randomly cropped from the disentangled illu-
mination Lr. Lr is disentangled from normal-exposed image xr (Rr,Lr =K (xr)).

Tokenization in Transformer
To convert an image into tokens, a straightforward approach involves flattening the image
into raw patches, as discussed in reference[41]. Given features of an image FFF ∈ RH×W×CF ,
it can be reshaped into a sequence of patches and treat them as tokens TTT . We can control the
dimension of tokens TTT by downsampling the feature maps FFF appropriately. Detail illustration
can be seen in Figure 12.
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Figure 12: Detailed Introduction of Dimension Reduction in CRT

This tokenization strategy first use the two ConvNorm blocks to map the images into
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feature maps. Then we exploit Adaptive AvgPooling operation to reduce the dimension of
feature maps to alleviating memory usage, meanwhile reducing parameters for training. In
our research, parameters H

P , W
P and CF are set to be 16, 16 and 36, respectively. The heads of

transformer block are set to be 9. And the MLP dimension is set to be 64 as shown in Figure

3. Finally, we can derive the tokens TTT ∈ R
HW
P2 ×CF that will be passed as input value into the

Transformer module shown in Figure 3.
In Figure 3, our designed Transformer contains a multi-head self-attention (MHSA) mod-

ule and a Multi-Layer Perceptron (MLP) with skip connection. This modules adopt the
GELU activation function and LayerNorm (LaN) as normalization. We can formulate the
following equations and obtain the output of the Transformer yyyout as follows.

TTT 0 = TTT

T̃TT i = MHSA(LaN(TTT i−1))+TTT i−1, i = 1,2, · · · ,n
TTT i = MLP

(
LaN

(
T̃TT i−1

))
+ T̃TT i−1, i = 1,2, · · · ,n

yyyout = LaN(TTT n)

(16)

In MHSA, given a feature X ∈ Rh×w×c from LaN, the output of multiple heads attention
are queue Q = W qi

p W q
d X , key K = W ki

p W k
d X and value V = W vi

p W v
d X . The output of MHSA

can be formulated as:

X̃ = softmax(QrKr/d)Vr +X (17)

where Qr,Vr ∈ Rh×w×c and Kr ∈ Rh×c×w are reshaped by Q,K,V . And we use Einstein’s
summation to calculate their product. d is a scale factor.

Analysis of CRT and Self-Supervised Training
Here we analyze how to derive our learning constraints and why embedding the composite
curve in CRT is necessary for our self-supervised training strategy.

Figure 13: Composite curve embedding in CRT with different parameter ϖ

1) Composite Curve Embedding in CRT:
Assume that the parameter map and image irradiance are defined as ϖ and III, the response

value can be calculated as III′ = (1−ϖ)sin
(

π

2 III
)
+ϖIII. The Taylor series of the sine function
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Substituting Eq.(18) into our composite curve, thus we can derive that:

III′ =
(

π (1−ϖ)

2
+ϖ

)
III +χ

=
(

π

2
−1

)
(1−ϖ) III +χ

(19)

where χ = (1−ϖ)∑
∞
n=1

(
π

2

)2n+1
(−1)n III2n+1

(2n+1)! + III.
Given an arbitrary image III, the brightness and contrast adjustment formula can be ex-

pressed as follows.

III′ = α
(
III− ĪII

)
+β ĪII (20)

where α > 0,β > 0.
This adjustment formula is a linear equation which can be regarded as III′ = αIII+γ where

γ = (β −α) ĪII. Assume that the mean value of III can be calculated as III = Γ ĪII and we can
rewrite Eq.(19) as follows.

III′ =
(

π

2
−1

)
(1−ϖ) III +Γ ĪII

+(1−ϖ)
∞

∑
n=1

(
π

2

)2n+1
(−1)n Γ 2n+1 ĪII2n+1

(2n+1)!

(21)

It is obvious that the role of Eq.(21) in adjusting image brightness and contrast is equiva-
lent to linear equation III′ =αIII+γ . In addition, we also present our designed composite curve
with ϖ values ranging from −1 to 1. It can be observed from Figure 13 that as the value
of ϖ approaches -1, the composite curve enhances the pixel brightness to a greater extent.
When ϖ equals 1, it is equivalent to making no adjustments to the image. Thus we can adjust
the brightness and contrast of dim images by employing composite curves of varying orders.
This enables the creation of a set of images with consistent content yet varying exposure lev-
els. Moreover, the composite curves we devised obviate the requirement for computing the
image mean value in each operation, a departure from conventional brightness adjustment
defined in Eq.(20). Additionally, they enable adjustment of brightness and contrast through
the modification of a single variable, leading to enhanced efficiency in terms of training pa-
rameters and computational performance. However, the pseudo-labeled images generated
by the NRNBM module, while achieving exposure level adjustments as demonstrated, often
suffer from color shifts and discrepancies in contrast, saturation, and overall color fidelity
when compared to real-world images, as illustrated in the Figure 3. Therefore, they can only
serve as guiding pseudo-labels for self-supervised training.

2) Learning Constraints in Self-Supervised Training:
Consider the objective of illumination disentanglement. Given a sequence of images

{IIIi}i=1,2,··· ,m with the same content but different exposure levels, we aim to learn a model K
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to disentangle the illumination from those images by minimizing the objective:

min
m

∑
i=1

EIIIi∼PI ||K
R (IIIi)⊗KL (IIIi)− IIIi||1 (22)

where KR, KL are submodels in K and PI is the distribution of arbitrary images.
This is the basic rule of illumination disentanglement that the reflectance and illumination

maps of a specific image can reconstruct this image. Besides, there exists an vital property of
illumination disentanglement that the reflectance of an image does not change due to changes
in its exposure level. The minimization problem defined in Eq.(22) can be reformulated as
follows.

min
m

∑
i=1

EIIIi∼PI ||K
R (IIIi)⊗KL (IIIi)− IIIi||1 +λ1 min

i ̸= j

∑
i, j∈[1,m]

EIIIi,III j∼PI ||K
R (IIIi)⊗KL (III j)− III j||1

s.t.||KR (IIIi)−KR (III j) ||1 = 0
(23)

In that case, the objective function can be formulated as:

J =
m

∑
i=1

EIIIi∼PI ||K
R (IIIi)⊗KL (IIIi)− IIIi||1 +λ1

i̸= j

∑
i, j∈[1,m]

EIIIi,III j∼PI ||K
R (IIIi)⊗KL (III j)− III j||1

+λ2

i̸= j

∑
i, j∈[1,m]

EIIIi,III j∼PI ||K
R (IIIi)−KR (III j) ||1 +λ4Jtv

(24)

where λ4 = 0.0001 and Jtv represents the total variation loss defined in traditional Retinex

decomposition[1, 21]. The first term
m
∑

i=1
EIIIi∼PI ||KR (IIIi)⊗KL (IIIi)− IIIi||1 corresponds to the

Lsr in our self-supervised training that is the most basic and indispensable.
When using Penalty or Augmented Largangian methods to solve minimization problems

in Eq.(23), if the constraint factor λ1,λ2 is applied too large, it will make the KR
v and KL

v
converge to a trivial solution as:

KL∗ (IIIi) = IIIi,KR∗ (•) = 111 (25)

The illumination model KL∗ becomes an identity function and reflectance model con-
verges to constants. Since we model KR∗ and KL∗ by end-to-end CNNs like autoencoders, it
is extremely easy to optimize them to trivial solutions as long as the constraint weights are
slightly unreasonable.

To overcome the above problem, we establish a learning constraint to facilitate our self-
supervised training. We employ the Max-RGB method in[42, 43] to regularize the learning
trajectory. We hope the solution of minimization problems in Eq.(23) should satisfy the
following constraint:

||KL (IIIi)−max
y∈ΩΩΩ

max
c∈{R,G,B}

IIIi||1 = 0 (26)

where ΩΩΩ stands for the 7×7 regions in the IIIi. And this constraint corresponds to the Lig in
our self-supervised training.
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(a) (b) (c) (d)

Figure 14: Optimization failures caused by unreasonable constraint weight settings. (a)
w/oLig, λ1 = 0.3, λ2 = 0.01. (b) w/oLig, λ1 = 0.1, λ2 = 0.001. (c) withLig, λ1 = 0.3,
λ2 = 0.01. (d) Ours (withLig, λ1 = 0, λ2 = 0)

Finally, according to[43], an effective solution for the illumination map must exhibit a
smooth texture while retaining the overall structural boundaries. Therefore, the total varia-
tion constraint Lis is also applied in our self-supervised training to preserve the reflectance
structures while restraining marginal noise. Different to previous works [1, 21], we utilize
the underexposed image directly, replacing the reflectance, to calculate the total variation
loss.

(a) (b) (c)

Figure 15: Optimization failures caused by improper total variation constraint. (a) w/oLis.
(b) Ours with Lis defined in Eq.(8). (c) Lis defined in [1].

To verify our proposed learning constraints, we specially conduct two experiments. The
results of the first experiment are shown in Figure 14. The examples in Figure 14 (a)-(c)
are obtained through self-supervised training using objective function defined in Eq.(24).
The superiority of the learning constraint proposed in our work is confirmed by comparing
various values of λ1 and λ2, as well as examining the impact of the new constraint established
in Eq.(26) on the disentangled results.

According to the results in Figure 14, we can find that the self-supervised training eas-
ily converges to unintentional solutions when hyperparameters λ1, λ2 are improper. After
implementing the Max-RGB constraint, even when using inappropriate hyperparameter set-
tings, the impact on the final Retinex decomposition result is minimized, ensuring consis-
tently high visual quality. In simpler terms, the designed learning constraints alleviate the
challenge associated with hyperparameter adjustments. Furthermore, to mitigate the model
training’s reliance on pseudo labels, we eliminate two losses by setting both variables, λ1
and λ2, to zero. Observing the results depicted in Figure. 14, we find a significant reduction
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Figure 16: Performance comparison of illumination disentanglement (Part 1)

in artifacts in the disentangled reflectance when these two terms are eliminated, resulting in
a more aesthetically pleasing and realistic output.

Another experiment is conducted to test the total variation constraint in our self-supervised
training strategy. The specific results are shown in Figure. 15. From Figure. 15, it is evident
that the total variation constraint designed in our paper ensures that there are no artifacts in
the disentangled reflectance and reduces the noise within it.

Consequently, we use the linear combination of Lsr, Lig and Lis to guide self-supervised
training. This improvement boosts the robustness of illumination disentanglement in RICG
and reduces its vulnerability to unsuitable hyperparameters.

The pseudo codes of our self-supervised training and unsupervised training are shown in
Algorithm. 1

RICGRetinexNet R2RNet

reflectance

input

reflectance reflectance

illumination illumination illumination

Figure 17: Performance comparison of illumination disentanglement (Part 2)
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Figure 18: Performance comparison of illumination disentanglement (Part 3)
Additionally, we compared the illumination disentanglement performance of our pro-

posed RICG, RetinexNet[1], and R2RNet[21]. Experimental results are illustrated in the
Figure. 16-Figure. 19. Upon examination of each reflectance component depicted in the
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Figure. 16-Figure. 19, it reveals that R2RNet[21] significantly reduces the contrast of re-
flectance components. Although the brightness of the images is increased, the visual quality
still remains unsatisfactory. Conversely, RetinexNet[1] presents numerous artifacts in its dis-
entangled results, making the reflectance more unauthentic. It is noteworthy that R2RNet[21]
and RetinexNet[1] are ineffective in processing underwater distorted images. (Refer to Fig-
ure. 16 for further details.) Conversely, our approach demonstrates robust performance in
achieving illumination disentanglement for underwater distorted images.

Implementation Specifications of Experiments

Parameter Settings: We implement our framework with Pytorch on two NVIDIA RTX
3090 GPUs. The batch size in training is set to be 32. The kernel weights and bias of each
layer in the models (except for the downsampling in DDFPN) are initialized with standard
zero mean and 0.1 standard deviation. Downsampling operations in DDFPN are initialized
by different pretrained backbones. The optimizer used in our framework are all Adam op-
timizers with default parameters and learning rate 0.001 for illumination disentanglement
network, 0.0001 for DDFPN. The weight parameters are set to be λis = 0.1, λig = 1, λsr = 1,
κ f = 1, κadv = 0.5. The stages m of the self-supervised training in illumination disentangle-
ment is set to be 6.

Compared Algorithms: We compare our RICG with many other mainstream image
restoration algorithms: Restormer [6], UHDFour [2], IAT [44], URetinex-Net [24], Zero-
DCE++ [20], EnlightenGAN [7], SCI [22], CLIT-LIP [28], RUAS [45], UNIE [29], NeRCo
[5], Neural Preset [30], TUDA [10], USUIR [11] and PUGAN [33].

Ablation Study

Table 4: Influence of Different Backbones on Model Efficiency and Performance (Test im-
ages are selected from BAID dataset.)

PSNR↑ SSIM↑ LPIPS↓ FLOPs(G) Pa(M) IT(s)
MobileNet 23.45 0.802 0.308 49.46 1.18 0.0478

SENet 22.83 0.765 0.340 229.98 76.10 0.4208
DenseNet 23.04 0.784 0.368 134.16 10.21 0.1635

Inception-ResNet-v2 23.88 0.829 0.285 249.63 5.19 0.2192

Impact of Pretrained Backbones in FPN. The proposed RICG is a flexible image en-
hancement scheme since we can choose different pretrained backbones for the FPN in illu-
mination generator. Here we conduct experiments where we retrain our model with different
pretrained backbones in illumination generator. We present the results of the impact on the
selection of pretrained backbones in Table 4. The MobileNet and Inception-ResNet-v2 are
the most representative choices among which we can choose Inception-ResNet-v2 in applica-
tions with higher performance requirements, while in cases with high real-time requirements,
we can choose MobileNet to serve as the backbones in FPN.
Impact of Stages in Self-Supervised Training. To investigate the impact of stages m in
self-supervised training, we conduct an experiment where we retrained our model with dif-
ferent setting of m. In this ablation experiment, we adopt a new image quality evaluation
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Figure 19: Performance comparison of illumination disentanglement (Part 4)

index termed visual information fidelity (VIF) [46]. The higher its value, the closer the tar-
get image is to the reference image. The experimental results are shown in Figure 20 and
Table. 5. They also indicate that our RICG can obtain better performance with more stages
of self-supervised training that means that more pseudo label images with different exposure
levels generated by CRT help our RICG improve its ability to learn the mapping rules of
illumination disentanglement.

Trained with mixture of LOL and SCIE Trained with BAID380

Trained with LOL Trained with LSRW-Huawei Trained with LSRW-Nikon

Input

Figure 20: Ablation study on the stages m in self-supervised training

Table 5: Influence of stages m in self-supervised training (Test images are selected from
LSRW datasets.)

PSNR↑ SSIM↑ LPIPS↓ VIF↑
Ours(m = 6) 19.88 0.802 0.311 0.592

m = 5 19.32 0.795 0.386 0.563
m = 4 18.44 0.790 0.392 0.486
m = 3 18.32 0.775 0.423 0.465
m = 2 16.14 0.711 0.462 0.441
m = 1 16.14 0.711 0.607 0.392

Impact of local discriminator in DDFPN: We conduct the ablation study on impact of lo-
cal discriminator in our DDFPN. The local discriminator operates on random image patches
of the adjusted illumination, primarily aimed at preventing local underexposure during ad-
justment of illumination, thereby averting the occurrence of similar issues in the final recon-
structed image. The visual comparison is given in Figure 21. It is obvious that some regions
of images in row (c) suffer from severe color distortion and overexposure/underexposure is-
sues. These results show that the local discriminator for disentangled illumination proposed
in our research has excellent performance for model adaptation to underexposed image en-
hancement under various lighting conditions.
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(a)

(b)

(c)

Figure 21: Visual comparison from the ablation study. (contribution of local discriminator)
(a): Input. (b): Ours with local discriminator. (c): w/o local discriminator. Please zoom in
view to see the details.

More Visualization Results

Visualization Results on OceanDark Datasets: The testing results are illustrated in Figure
22. Although the brightness of the enhanced version from SCI[22] and Neural Preset[30]
has been restored, the overall color appears dimmed, leading to a reduction in visual quality.
Unfortunately, enhanced results from IAT[44] method suffer from severe color deviation.
Notwithstanding EnlightenGAN[7] also adopts a self attention mechanism, we are still able
to observe in the enhanced images certain areas where the restoration of exposure levels is
unreasonable, resulting in the presence of black patches. Similar issues also arise in the re-
sults of the STAR[47], with the difference being that the enhancement results of the Retinex
method deviate more from the ideal enhancement results. The brightness of regions origi-
nally characterized by high luminosity decreases significantly, whereas areas initially pos-
sessing low luminosity exhibit abnormal increases in brightness. The CLIT-LIP method[28]
and NeRCo approach[5] exhibit limited image restoration capabilities when applied to Oce-
anDark datasets. This suggests that the post-enhancement brightness remains relatively low.
Our RICG yields the most visually favorable results, whether it is applied to low-light images
on land or underwater.

Visualization Results on Night Scene Image: Figure 23 and Figure 24 show more
visual comparisons between the enhanced version of night scene images generated by our
RICG and the compared methods. These findings demonstrate that the RICG we propose
effectively enhances low-light images, avoiding issues related to overexposure or underex-
posure. In comparison to the methods employed for comparison, our approach achieves a
superior level of naturalness in the enhanced images.

Visualization Results on LSRW dataset: Figure 25 show more visual comparisons
between the enhanced results of low-light images in LSRW dataset. The results show that
our RICG stores the color and the content of details in the underexposed regions most clearly
and realistically, and the enhanced details have best and natural color contrast while keeping
the normal-exposed background remain unchanged.

Visualization Results on DCIM dataset: Figure 26 show more visual comparisons
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between the enhanced results of a backlit image in DCIM dataset. The illumination dis-
parity among different regions within this backlit image is substantial, thereby increasing
the complexity of the restoration process. Compared to other mainstream methods, the re-
sults achieved by RICG not only preserve the brightness in well-lit regions but also enhance
the backlight areas moderately. This enhancement elevates the underexposed regions while
simultaneously improving the overall contrast, thereby enhancing the visual quality.

Visualization Results on VV dataset: Figure 27 provides some enhanced performance
comparisons between the enhanced results of underexposed images in VV dataset. Our
RICG produces the most visually favorable results among those state-of-the-art algorithms.

Algorithm 1: Cooperative Game in RICG
Input: Unpaired Training dataset X , total number of paired training samples N,

training steps Nep, batch size nb
Output: Image restoration modelM

1 calculate the number of times a sample needs to be traversed in each training step
nbs = N//nb;

2 for i = 1; i≤ Nep; i++ do
3 for j = 1; j ≤ nbs; j++ do
4 if i < 40 then
5 diter = 3, β = 5;

6 else
7 diter = 6, β = 0.1;

8 if j//diter ̸= 0 then
9 K.eval(), T .eval() (fix the parameters in K, T and denote them as

α∗d ,ω
∗);

10 Get a batch of distorted images x from unpaired image dataset X ;
11 Calculate the cooperative loss Lgame = J

(
α f

)
+βLD

(
α∗d ,ω

∗);
12 Update the trainable parameters of the DDFPN using Adam optimizer

α f ← α f −η∇α fLgame
(
α f ,α

∗
d ,ω

∗);
13 Continue;

14 else
15 K.train(), T .train();
16 Get a batch of distorted images x from unpaired image dataset X ;
17 Calculate the cooperative loss Lgame = J

(
α f

)
+βLD (αd ,ω);

18 Update the trainable parameters of the illumination disentanglement
network, CRT and DDFPN using Adam optimizer;

19 α f ← α f −η∇α fLgame
(
α f ,αd ,ω

)
;

20 αd ← αd−η∇αdLgame
(
αd ,α f ,ω

)
;

21 ω ← ω−η∇ωLgame
(
ω,α f ,αd

)
;

22 Update the global/local discriminators according to JD defined in
Eq.(15).

23 Return Image restoration modelM;
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Figure 22: Visualization results of our method and other state-of-the-art algorithms on Oce-
anDark dataset[48]
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Figure 23: Visualization results of our method and other state-of-the-art algorithms on Dark-
Face dataset[49]
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Figure 24: Visualization results of our method and other state-of-the-art algorithms on Dark-
Face dataset[49]
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Figure 25: Visualization results of our method and other state-of-the-art algorithms on
LSRW dataset[21]

Citation
Citation
{} 



MULTI-LEVEL FEATURE FUSION FOR IMAGE ENHANCEMENT: MAO AND CUI 27

Input RICG EnlightenGAN
TIP2021

Zero-DCE++
TPAMI2021

SCI-difficult
CVPR2022

SCI-medium
CVPR2022

SCI-easy
CVPR2022

RUAS-dark
CVPR2021

RUAS-lol
CVPR2021

RUAS-upe
CVPR2021

UNIE
ECCV2022

CLIP-LIT
ICCV2023

URetinex-Net
CVPR2022

UHDFour
ICLR2023

Restormer
CVPR2022

NeRCo-LSRW
ICCV2023

NeRCo-LOL
ICCV2023

IAT-exposure
BMVC2022

IAT-enhance
BMVC2022

Neural Preset
CVPR2023

Figure 26: Visualization results of our method and other state-of-the-art algorithms on DCIM
dataset[50]
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Figure 27: Visualization results of our method and other state-of-the-art algorithms on VV
dataset
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