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Abstract

Existing approaches to enhancing distorted images frequently grapple not only with
the dual challenges of optimizing visual fidelity and computational efficiency but also
tend to be ineffectual in uncharted and intricate scenarios. Herein, we present a Retinex-
inspired cooperative game based image restoration technique termed RICG to address
the difficulty of navigating model performance and efficiency in different kinds of envi-
ronments within a unified model. Specifically, we propose a two-step pipeline, compris-
ing self-supervised illumination disentanglement and adjustment. The zero-shot illumi-
nation disentanglement is trained through a novel camera response Transformer (CRT),
followed by illumination adjustment using a dual-discriminator feature pyramid network
(DDFPN) incorporating an self-attention regularization. It is worth mentioning that we
devise a specialized training process to reconstruct the optimal restored image through
cooperative game. We substantiate the diverse advantages of RICG over existing meth-
ods through a meticulous and comprehensive evaluation process, illustrating its versatil-
ity in unexplored and convoluted circumstances. (Implementation code can be accessed
at https://github.com/Ruiqi-Mao/RICG.)

1 Introduction
Image restoration endeavors to enhance the visibility of concealed information within dis-
torted imagery, thereby enhancing overall image quality. This subject has garnered signifi-
cant attention across various emerging computer vision domains. However, existing models
are typically tailored and trained for specific domains, whereas the causes of image distor-
tions vary significantly across diverse environments. Consequently, it is impractical for a
unified model to comprehensively restore distorted images in diverse environments.

Existing image restoration methods [1, 2, 3, 4, 5, 6, 7, 8, 9], whether supervised or un-
supervised, mostly only work for distorted images collected in a specific environment. For
instance, RetinexNet [1] is only suitable for training on low-light images, while methods
such as TUDA [10] and USUIR [11] are trained on underwater image datasets labeled with
synthetic images, as illustrated in Figure 1. However, deep learning based domain adapta-
tion methods like CycleGAN [12, 13], DRIT [14] and MUNIT [15] are all considered to
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Figure 1: Comparison among recent state-of-the-art methods and our method in different
environments. Visual quality comparison is shown in (a). Computational efficiency and
numerical scores for five types of measurement metrics among three tasks including en-
hancement (PSNR, SSIM, and VIF) and segmentation (mIoU,mAcc) are shown in (b)-(d)

have significant potential for use in restoring distorted images in complex and variable en-
vironments, but they have some limitations. Firstly, they perform poorly when there are
significant distribution differences between the target and source domains. Owing to the ab-
sence of ground-truth supervision information, they may generate artifacts and distortions,
especially when the input images are of low quality or exhibit significant semantic differ-
ences. Most importantly, those models with a large number of trainable parameters and
FLOPs that utilize cycle-consistency suffer from the hardship of significantly longer training
time.

Inspired by Retinex theory, we specially develop an illumination disentanglement mod-
ule that estimate illumination and reflectance of distorted images without any supervision
from ground-truth images through a multi-stage zero-shot training process. That help us
remove the influence of ambient illumination on distorted images. On the other hand, we
utilize multi-level feature fusion method, based on DDFPN, to leverage the advantages of
much more flexible, robust illumination adjustment. On this basis, a more robust image
restoration under intricate scenarios is realized through a cooperative game between the illu-
mination disentanglement and multi-level feature fusion.

Our contribution could be summarized as follow:
1): Motivated by the properties of nonlinear camera response models, we first design

a novel data-driven camera response function based on a lightweight Transformer, named
CRT, and successfully apply it to self-supervised training for multi-stage illumination disen-
tanglement.

2): To reconcile the restoration of large and small objects in images, we propose a
DDFPN motivated by multi-level feature fusion approaches. The global discriminator is
employed to discern adjusted illumination, ensuring overall restoration, while a local dis-
criminator operates on randomly sampled image patches within the reconstructed image,
ensuring restoration of small-scale objects.

3): We propose a training strategy based on cooperative games, enabling the collabora-
tion of two vital modules within the RICG framework to achieve optimal image restoration
results. And comprehensive experimental results validate our method’s robustness across
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various scenes including many application scenarios like underwater image enhancement,
nighttime image enhancement and backlit images, etc.

2 Self-Supervised Illumination Disentanglement
In this section, we will introduce the data-driven illumination disentanglement module and
its multi-stage zero-shot training process without any supervision from ground-truth images.

image irradiance pixel value Heat map of   𝜆

Figure 2: Here we show our designed CRF, image irradiance, their response pixel values and
the heat map of parameters in our designed CRF.

2.1 CRT for Pseudo Label
Due to the lack of ground-truth images and no strong form of external supervision is avail-
able, we need to develop a module to generate pseudo labels for regularized self-supervised
training. Motivated by camera manufacturers and their nonlinear in-camera processes termed
camera response function (CRF) [16, 17, 18], we can develop a data-driven CRF to adjust
exposure levels without altering the original image content, thereby effectively guiding self-
supervised training. The design of such a function f in data-driven CRF needs to satisfy
three vital properties as follows: 1) f is the same for all pixels on the sensor. 2) It is crucial
that each pixel value in the pseudo labels should fall within the normalized range of (0,1)
that can be represented as f ∈ [0,1]. 3) f monotonically increases.

Under these assumptions, define G as the theoretical space of f :

G := { f | f (0) = 0, f (1) = 1,a > b, f (a)> f (b)} (1)

The most representative CRF is an empirical model called EMoR[18] by analyzing the
real-world camera response curves. This approach applies Principal Component Analysis to
the DoRF[17] database, which comprises 201 real-world response curves, and derives the
eigenvectors of these curves. Assume that E ∈Rm×n is the light reaching the camera, i.e. the
image irradiance. The EMoR can be represented as:

f (E) : P = f0 (E)+
M

∑
n=1

cnhn (E) (2)

where f0 is the average curve of the DoRF and hn is the n-th eigenvector. P represent the
pixel value.
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Figure 3: (a) The basic architecture of the proposed CRT that is established based on Trans-
former module and a specially designed composite curve. (b) The detailed structure of Trans-
former encoder is illustrated in this subfigure.

Compared to traditional CRFs, our proposed CRF focuses more on mapping image irra-
diance to pixel values of varying intensities rather than fitting the photodetectors of a specific
camera model. Thus, we can design a novel CRF as follows: f (E) : P=(1−λ )sin(πE/2)+
λE, λ ∈ (0,1)

The introduction of the sine function term is intended to facilitate pixel value adjust-
ments, while the value of λ determines the degree of irradiance preservation. As shown in
Figure 2, a larger λ indicates a diminished influence of the sine function term, resulting in
lesser changes to the irradiance. When λ = 1, the CRF is equivalent to an identity transfor-
mation.

Considering the refinement requirements of high-resolution images, λ should be a global
parameter map of the same size as the image f (E) : P=(1−Λ)sin(πE/2)+ΛE,Λ ∈Rm×n.
The response of each pixel can be expressed as pi, j = (1−λi, j)sin(πei, j/2)+λi, jei, j. pi, j,
ei, j and λi, j are the elements in row i and column j of P, E and Λ respectively.

image irradiance （a） （b） （c）

Figure 4: Visualization results of different CRFs: (a) EMoR∗ [18] (b) EMoR [17] (c) Our
CRT

To enhance the flexibility of the CRF across various scenarios, we integrate our designed
CRF with a Transformer encoder called camera response Transformer (CRT). The detailed
structure of CRT is shown in Figure 3(a). Due to the adoption of globally adaptive param-
eters, our proposed CRT demonstrates a superior ability to maintain image semantics and
color consistency compared to traditional CRFs like EMoR [17] and EMoR∗ [18], as illus-
trated in Figure 4. As observed in the heatmap in Figure 2, regions with lower irradiance
exhibit smaller λi, j, indicating a lower degree of preservation of the original pixel values.
Our proposed CRT emphasizes enhancing the mean pixel values while maintaining semantic
and texture consistency, thereby generating pseudo labels for illumination disentanglement
training.
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Figure 5: Our Self-Supervised Training Strategy

2.2 Self-Supervised Training Strategy
We specially develop a self-supervised training strategy to train the illumination disentan-
glement network, as shown in Figure. 5. Due to the absence of ground-truth images as
reference, we transform the CRT designed in the previous section into a sequential form and
it can generate pseudo label images with different exposure level. Thus, we can establish the
following multi-stage training model:{

xt = ft−1 (xt−1) , ft−1 : xt = (1−Λt−1)sin
(

π

2 xt−1
)
+Λt−1, Λt−1 = CRT(xt−1)

Rt ,Lt =K (xt) , t = 1,2, · · · ,m (3)

where K (•) stands for the forward function of illumination disentanglement network.
We devise several loss terms to regularize the learning. First, we need to restrict the

response pixel value from CRT. A reasonable CRT need to maintain consistency with the
contrast of raw images. Inspired by prior works [19, 20], we have the following constraint:

Lcon =
1

Np

m

∑
t=1

Np

∑
i=1

∑
j∈Ωi

[(
Pi

x0
−P j

x0

)
−
(
Pi

xt −P j
xt

)]2
(4)

where Np represent the number of pixels in the image. Ωi denote the set of eight pixels
around pixel i (up, down, left, right, upper left, upper right, lower left and lower right). Px0
and Pxt represent the pixels of x0 and xt .

The color distribution of response pixel values also need to be consistent with that of raw
images. Thus we need to make learning constraints as follows:

Lc =
m

∑
t=1

∑
c∈ξ

(1−C (xc
0,x

c
t )) (5)

where C represent the cosine similarity function. And ξ represent the RGB channels of
pseudo labels.

Different to conventional Retinex decomposition[1, 21], we abandon the invariable re-
flectance constraint and do not directly use pseudo labels as supervision information for
training. Thus we can derive the self-reconstruction loss as:

Lsr =
m

∑
t=1

||Rt ⊗Lt − xt ||1 (6)
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The illumination guidance loss can be formulated on the basis of Max-RGB illumination:

Lig =
m

∑
t=1

(
||Lt −max

p∈ΩΩΩ

max
c∈{R,G,B}

xc
t (p) ||1

)
(7)

where ΩΩΩ stands for the 7×7 regions in the xc
t .

To preserve the structures of reflectance meanwhile restraining marginal noise, we pro-
pose an smoothness loss[1, 22].

Lis =
m

∑
t=1

N

∑
i=1

∑
j∈Ni

ϖi j|L i
t −L j

t |, ϖi j = exp
(

∆i j

2σ2

)
,∆i j = ∑

c
(xi − x j)

2 (8)

where N denotes the total number of pixels of the image and i− represents the ith pixel in
the image. Ni is the adjacent pixels of i in 7×7 region.

The final loss of illumination disentanglement network is a linear combination of Eq.(4)-
Eq.(8), as:

LD = Lcon +Lc +λisLis +λigLig +λsrLsr (9)

where positive constants λis,λsr,λig stand for weighting factors. Please refer to the analysis
in Supplementary Material on why proposed self-supervised training strategy can guaran-
tee a robust enhancement performance and superiority of our algorithm over RetinexNet [1]
and R2RNet [21].

3 Flexible Illumination Adjustment

3.1 Unsupervised Training Loss
As shown the illustration of DDFPN in Supplementary Material, the disentangled results
denoted as R (reflectance) and L (illumination). And L is the input of DDFPN. The
adjusted disentangled illumination (output of DDFPN) is denoted as La. The La is used
to reconstruct the enhanced image. The downsampling of DDFPN can be flexibly switched
by using a variety of pretrained backbones, and users can choose according to their different
needs.

To ensure coherence between the enhanced semantic feature information of the image
and the original content, we introduced a illumination map perception loss, guiding the
model’s learning process. Thus the loss term can be expressed as follows.

J f = ||φ4 (R⊗La)−φ4 (x) ||1 +
4

∑
i=1

||φi (K (R))−φi (La) ||1 (10)

Following [23] we instantiate {φi}4
i=1 as relu1-1, relu2-1, relu3-1 and relu4-1 layers in

VGG19.
Finally, we employ an adversarial loss to guide the training of DDFPN, allowing the

synthesis of a counterfeit image that attains a level of realism comparable to real images.
The global discriminator evaluates enhanced results to guide the DDFPN in generating more
authentic enhanced images, while the local discriminator receives randomly cropped patches
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from the adjusted illumination, ensuring that their distribution closely matches that of the
disentangled illumination from normal exposure image. It can be formulated as follows.

J adv = (DG (R⊗La)−1)2 + ∑
la∈P

(DL (la)−1)2
(11)

where DG and DL denote the global discriminator and local discriminator. And P denotes
the set of randomly cropped patches from adjusted illumination La.

Finally, the total loss function can be expressed as:

J = κ fJ f +κadvJ adv (12)

where κ f and κadv are positive constant which serve as the weights of the loss terms.

3.2 Cooperative Game
The illumination disentanglement module and DDFPN are both vital component in our im-
age restoration scheme. Our primary objective is to investigate how two modules collaborate
to decouple ambient illumination and autonomously adjust illumination, aiming to achieve
more robust and flexible image restoration in unknown complex scenarios. Specifically, we
formulate the training process of these two modules as a cooperative game and aim to solve
the following optimization model:

min
α f

{
min
αd ,ω

Lgame
(
α f ,αd ,ω

)}
(13)

We denote Lgame as a cooperative loss as follow:

Lgame := J
(
α f

)
+βLD (αd ,ω) (14)

where α f are trainable parameters of DDFPN, αd ,ω are parameters of illumination disen-
tanglement network and CRT. β ≥ 0 denotes a trade-off parameter.

Our training strategy and logic are illustrated in the form of pseudo code shown in Sup-
plementary Materials.

Table 1: Quantitative Comparison With State-of-the-Arts on the BAID, LSRW, UHD-LL.
(The best result is in red whereas the second best one is in blue under each case. And green
indicates the third best.)

Datasets BAID LSRW UHD-LL
IT[sec]

Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

URetinex-Net[24] 18.68 0.773 0.3081 14.78 0.661 0.4197 13.43 0.739 0.495 0.5785
UHDFour[2] 18.71 0.801 0.3176 18.20 0.656 0.3883 18.33 0.855 0.420 0.1088

LightenDiff [25] 19.88 0.855 0.3381 15.89 0.694 0.3563 16.23 0.789 0.447 0.0826
Wang et al. [26] 20.73 0.870 0.2682 16.05 0.706 0.3776 12.08 0.795 0.502 0.0028
GlobalDiff [27] 19.82 0.854 0.2986 13.82 0.685 0.3279 14.01 0.811 0.425 0.0976
CLIP-LIT [28] 22.35 0.862 0.3098 15.62 0.691 0.4087 13.12 0.651 0.470 0.1376

UNIE [29] 14.48 0.689 0.4628 10.35 0.562 0.4913 9.58 0.682 0.554 0.3675
NeRCo[5] 20.45 0.849 0.3281 14.20 0.653 0.4680 12.75 0.722 0.483 3.9918

Neural Preset[30] 18.05 0.726 0.3369 15.12 0.646 0.5091 12.36 0.708 0.582 0.0279
RICG 22.65 0.886 0.2927 19.46 0.716 0.3671 15.25 0.804 0.413 0.0306
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4 Experiments
We assemble a mixture of 1000 distorted images and 1000 normal images from several
datasets released in [1, 9, 31] to train our RICG model. All those training images are resized
to the size of 400×600×3. Our framework is implemented with Pytorch on two NVIDIA
RTX 3090 GPUs. The model undergoes training for the initial 100 epochs using a learn-
ing rate of 0.0001, after which it proceeds with an additional 300 epochs during which the
learning rate linearly decays to 0. We use the Adam optimizer and the batch size is set to be
32.

We evaluate our proposed RICG on benchmark datasets for both low-level and high-level
vision tasks under different illumination conditions. Two low-level vision tasks include: (1)
low-light image enhancement. (2) underwater image enhancement. One high-level visions
tasks include: (3) semantic segmentation.

More details and hyperparameters settings please refer to Supplementary Materials.

Input RICG NeRCo-LSRW (ICCV 23’)CLIP-LIT (ICCV 23’) UHDFour (ICLR 23’)

UNIE (ECCV 22’) LightenDiff (ECCV 24’) Wang et al. (CVPR 24’) URetinex-Net (CVPR 22’) GlobalDiff (NeurIPS 23’)

Figure 6: Visualization results on our NCampus dataset.

4.1 Low-Light Image Enhancement
To assess the robustness of the proposed RICG across diverse real-world scenarios, we em-
ploy our self-collected NCampus dataset that are captured in wild and harsh environment
to demonstrate the enhancement results obtained by different algorithms. The enhance-
ment results are shown in Figure 6. We observe that LightenDiff [25], Wang et al. [26]
and GlobalDiff [27] have made some progress in enhancing the brightness of low-light im-
ages. However, these methods still suffer from low visibility and subpar visual quality. The
enhanced results generated by those algorithms, including NeRCo[5], URetinex-Net[24] and
UNIE[29], manifest subpar visual quality, marked by notable deficiencies in brightness and
clarity. This deficiency stems from the severely restricted capacity of these three methods to
accurately restore authentic nighttime images captured in the wild environment. By observ-
ing the zoomed-in-view region, it can be noted that RICG yields clearer details and higher
restoration quality compared to CLIT-LIP[28].
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To assess the quantitative comparison of our experimental results, we employ three full-
reference image quality evaluation (IQA) metrics including PSNR, SSIM and LPIPS to
compare the performance of our RICG with many mainstream algorithms on BAID[28],
LSRW[21] and UHD-LL[2]. In addition, we use the inference time (IT) to measure effi-
ciency of proposed RICG and other algorithms. The detailed comparison results with re-
spect to IQA metrics is presented in Table. 1. As shown in Table. 1, our method achieves
the best results for the SSIM, PSNR metrics on the BAID[28], LSRW[21] datasets. Par-
ticularly, our method exhibits the best average values for SSIM and PSNR metrics across
those three datasets. Regarding LPIPS metrics[33], our method also demonstrates competi-
tive performance compared to state-of-the-art alternatives. It remains highly competitive and
effectively balances model performance and efficiency.

4.2 Underwater Image Enhancement
In underwater image restoration tasks, we use Neural Preset[30], TUDA [10], USUIR [11]
and PUGAN [34] to compare with our RICG. Testing images are selected from URPC
dataset1 and Color-Checker7 dataset [35].

As depicted in Fig. 7, USUIR [11] exhibits poor performance when faced with severely
distorted underwater images. Its ability to correct color shifts in such conditions is relatively
weak. In contrast, PUGAN [34] demonstrates a significantly more comprehensive improve-
ment in severe color shifts. However, its enhancement of contrast is not pronounced, leading
to suboptimal visual quality. The performance of TUDA [10] is comparable to that of RICG.
However, upon closer examination, some minor artifacts can be observed in TUDA’s han-
dling of certain image details. Meanwhile, in the upper right corner of the image results,
we annotate the evaluation metric scores for each image. The first row is derived from the
Color-Checker7 dataset [35], where we assessed using the CIEDE2000 [36]. The second
row represents quantitative comparisons conducted through UCIQE [37]. Our method ex-
hibits the lowest CIEDE2000 [36] and the largest UCIQE [37] scores, indicating that the
enhanced images from RICG have the smallest deviation from the reference image. Table. 2
lists the results of quantitative comparison and our method has competitive performance with
state-of-the-art alternatives.

Raw image Ours TUDA(TIP 23’) USUIR (AAAI 22’) NPreset (CVPR 23’)

15.98 10.16 16.38 12.65 11.88

0.28 0.50 0.44 0.42 0.46

Figure 7: Ablation study on learning constraints in self-supervised training.

4.3 High-Level Vision Tasks
We utilize the PSPNet[38] as the benchmark to assess segmentation performance by em-
ploying the "pre-train + fine-tune" pattern, analogous to the methodology utilized in [22].

1https://aistudio.baidu.com/datasetdetail/228251
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Table 2: Quantitative Comparison With State-of-the-Arts.

Metrics UCIQE↑ UIQM↑ UIQM
CCF↑ CCF

Methods UICM UISM UICONM Colorfulness Contrast Fogdensity

USUIR [11] 0.59 5.0744 2.78 7.39 0.787 29.2048 20.10 37.38 7.60
PUGAN [34] 0.58 4.7900 2.19 7.27 0.722 28.8607 14.97 38.02 8.08

Neural Preset [30] 0.54 5.0795 1.98 7.75 0.765 27.4928 14.01 36.53 7.26
TUDA [10] 0.62 5.0952 2.75 7.33 0.798 30.1717 20.13 38.86 7.74

Ours 0.60 5.2013 2.86 7.80 0.788 30.8307 18.21 40.54 7.62

We conduct image segmentation test using the ADE20K dataset[39] and ACDC dataset[40].
Specifically, we employ an image rendering model[30] to render images from the ADE20K
dataset[39] as underexposed images. Subsequently, these underexposed images are restored
using image restoration techniques and then input them into the PSPNet[38] to obtain seg-
mentation results. Figure. 8 and Table. 3 demonstrate the results of quantitative and quali-
tative comparison among different methods. Our performance surpasses that of other state-
of-the-art methods by a significant margin. It can be seen from Figure. 8 that our RICG
can restore the image with the highest visual quality from the distorted image, so it has the
highest accuracy of segmentation results.

Input RICG CLIP-LIT (ICCV 23’) SCI (CVPR 22’) NeRCo (ICCV 23’)UHDFour (ICLR 23’)

Figure 8: Visual results of semantic segmentation on the ADE20K dataset[39].

Table 3: Quantitative results of semantic segmentation

Methods RICG NeRCo[5] TUDA [10] CLIP-LIT [28] SCI [22] UHDFour[2] PUGAN[34]

mIoU 0.4667 0.3920 0.3728 0.3896 0.4343 0.4533 0.3804
mAcc 0.6067 0.5541 0.5446 0.5729 0.6011 0.6093 0.5259
aAcc 0.7925 0.7623 0.7015 0.7419 0.7535 0.7336 0.7126

5 Conclusion

We have developed a versatile image restoration framework trained on unpaired data, which
demonstrates enhanced robustness and faster performance in complex and changeable envi-
ronments. The primary innovation of the RICG method involves a cooperative game between
CRT-assisted multi-stage illumination disentanglement through self-supervised training and
multi-level feature fusion-driven DDFPN. Sufficient experimental results on various kinds of
distorted images demonstrate that our approach outperforms multiple state-of-the-art meth-
ods across both subjective and objective metrics in wild environment. In our future endeav-
ors, we will explore methods to control and adjust image restoration style based on user
preference within a unified model.
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