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Our approach generates amodal masks for objects layer by layer,
including both visible and hidden parts.
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» Human perception uses objects in the foreground to infer occluded objects behind them.

» Similarly, our approach employs a cumulative mask that aggregates the masks of previously identified objects.

» This keeps a clear record of areas already segmented and directs focus to hidden regions.

Experimental Results

Layer 1 2 3 4 5

Dataset Method IoU/ AP IoU/ AP IoU / AP IoU / AP IoU/ AP

Intra-AFruit DIS 89.5/90.7 81.6/82.6 52.4/52.6 08/124 05/2.0

Ours 94.3/94.7 87.4/ 88.2 76.2/77.3 26.7/ 27.6 7.2/7.4

ACOM DIS 31.6/34.8 26.6 / 28.7 1.6/10.2 0.2/6.0 0.1/2.5
Ours 57.1/57.8 44.8 / 45.4 28.8/ 30.0 12.2/14.2 1.9/ 3.6

B e sl A Gk o e Our approach considers the (?wers_lty _of possible amoda_l masks,
O 770/793 487/51.2 25.4/27.8 85/9.9 1.0/ 1.1 especially for occluded regions (indicated by dashed circles).

Comparison with diffusion-based segmentation model [32) without cumulative
occlusion learning. Ours exhibits great improvement in deeper-layer scenes.

Intra-AFruit ACOM MUVA
Method APw/ APw/o | APw/ APw/o | APw/ AP w/o
Layer Layer Layer Layer Layer Layer
PointRend [12]] N/A 70.9 N/A 22.0 N/A 38.9
AlSFormer[3o]] N/A 704 N/A 34.9 N/A 49.7
PLIn [11| 42.2 78.9 3.9 17.0 16.3 47.3
Ours 84.6 92.6 45.4 65.5 53.1 53.7

Comparison with category-specific segmentation models. Despite being trained
on class-agnostic data, ours surpasses those trained on category-labelled data.

Ground Truth  (a) Ours (b) DIS [32] (c¢) PLIn [1](d) PointRend [12]

Image

-- Dashed circles indicate objects that missed being predicted.

Our approach performs better at segmenting objects/providing
more plausible amodal masks than others.



