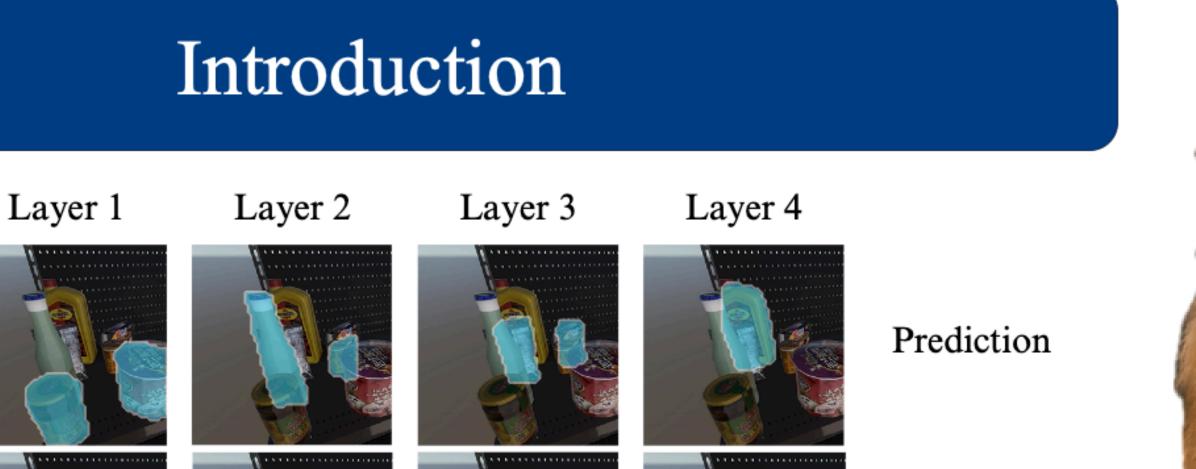


Input Image

## Sequential Amodal Segmentation via Cumulative Occlusion Learning

Jiayang Ao<sup>#</sup>, Qiuhong Ke\*, and Krista A. Ehinger<sup>#</sup> The University of Melbourne<sup>#</sup>, Monash University\* jaao@unimelb.edu.au



Our approach generates amodal masks for objects layer by layer, including both visible and hidden parts.

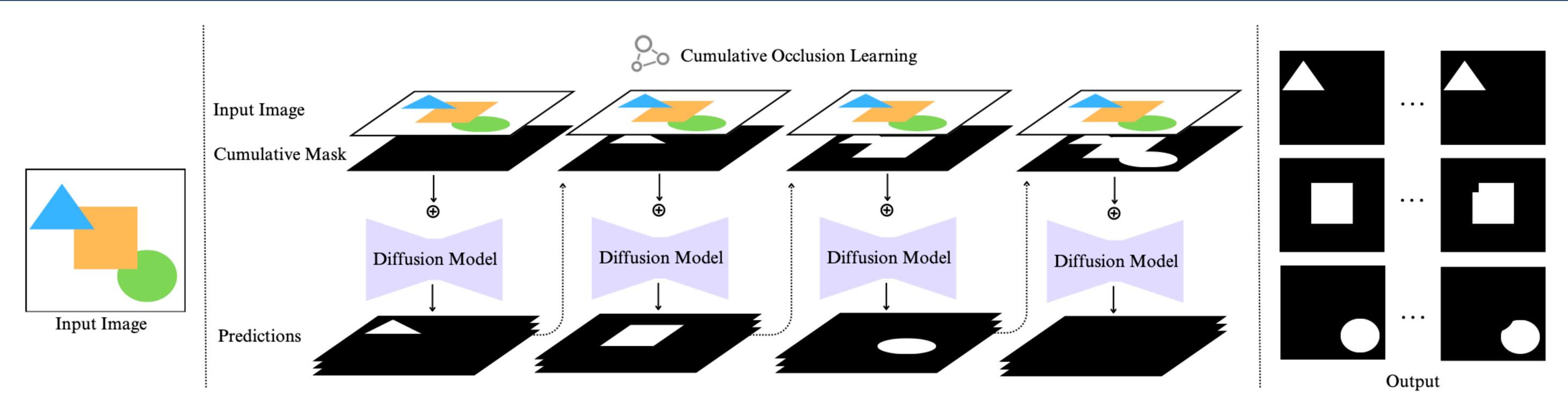
## **Contributions:**

- Handles unlimited layers of occlusion
- Simultaneously predicts amodal masks & occlusion order
- Accounts for uncertainty in occluded regions





## Model Architecture



- > Human perception uses objects in the foreground to infer occluded objects behind them.
- > Similarly, our approach employs a cumulative mask that aggregates the masks of previously identified objects.
- > This keeps a clear record of areas already segmented and directs focus to hidden regions.

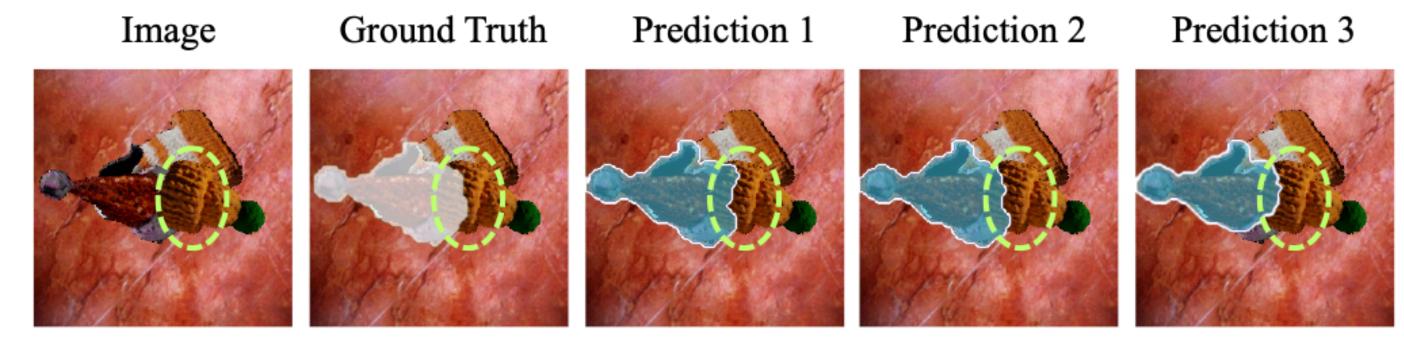
## Experimental Results

| Dataset      | Layer<br>Method | l IoU / AP  | 2<br>IoU / AP             | 3<br>IoU / AP             | 4<br>IoU / AP             | 5<br>IoU / AP |
|--------------|-----------------|-------------|---------------------------|---------------------------|---------------------------|---------------|
| Intra-AFruit | DIS             | 89.5 / 90.7 | 81.6 / 82.6               | 52.4 / 52.6               | 9.8 / 12.4                | 0.5 / 2.0     |
|              | Ours            | 94.3 / 94.7 | <b>87.4</b> / <b>88.2</b> | <b>76.2</b> / <b>77.3</b> | <b>26.7</b> / <b>27.6</b> | 7.2 / 7.4     |
| ACOM         | DIS             | 31.6 / 34.8 | 26.6 / 28.7               | 1.6 / 10.2                | 0.2 / 6.0                 | 0.1 / 2.5     |
|              | Ours            | 57.1 / 57.8 | 44.8 / 45.4               | 28.8 / 30.0               | 12.2 / 14.2               | 1.9 / 3.6     |
| MUVA         | DIS             | 68.2 / 71.5 | 19.3 / 27.3               | 0.1 / 8.6                 | 0.2 / 3.4                 | 0 / 0.5       |
|              | Ours            | 77.0 / 79.3 | 48.7 / 51.2               | 25.4 / 27.8               | <b>8.5</b> / <b>9.9</b>   | 1.0 / 1.1     |

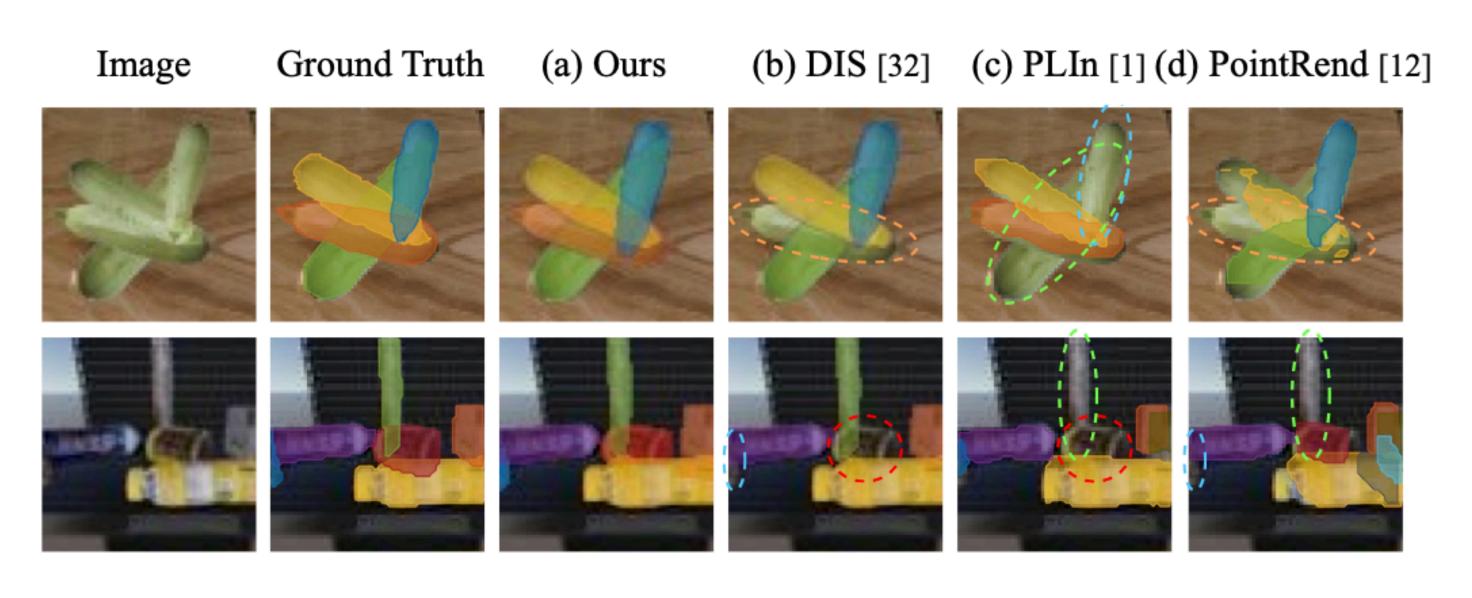
Comparison with diffusion-based segmentation model [32] without cumulative occlusion learning. Ours exhibits great improvement in deeper-layer scenes.

|                 | Intra-AFruit |        | ACOM  |        | MUVA  |             |
|-----------------|--------------|--------|-------|--------|-------|-------------|
| Method          | AP w/        | AP w/o | AP w/ | AP w/o | AP w/ | AP w/o      |
|                 | Layer        | Layer  | Layer | Layer  | Layer | Layer       |
| PointRend [12]  | N/A          | 70.9   | N/A   | 22.0   | N/A   | 38.9        |
| AISFormer [30]  | N/A          | 70.4   | N/A   | 34.9   | N/A   | 49.7        |
| <b>PLIn</b> [1] | 42.2         | 78.9   | 3.9   | 17.0   | 16.3  | 47.3        |
| Ours            | 84.6         | 92.6   | 45.4  | 65.5   | 53.1  | <b>55.7</b> |

Comparison with category-specific segmentation models. Despite being trained on class-agnostic data, ours surpasses those trained on category-labelled data.



Our approach considers the **diversity** of possible amodal masks, especially for occluded regions (indicated by dashed circles).



-- Dashed circles indicate objects that missed being predicted.

Our approach performs better at segmenting objects/providing more plausible amodal masks than others.