

Input Image

Sequential Amodal Segmentation via Cumulative Occlusion Learning

Jiayang Ao[#], Qiuhong Ke*, and Krista A. Ehinger[#] The University of Melbourne[#], Monash University* jaao@unimelb.edu.au

Our approach generates amodal masks for objects layer by layer, including both visible and hidden parts.

Contributions:

- Handles unlimited layers of occlusion
- Simultaneously predicts amodal masks & occlusion order
- Accounts for uncertainty in occluded regions

Model Architecture

- > Human perception uses objects in the foreground to infer occluded objects behind them.
- > Similarly, our approach employs a cumulative mask that aggregates the masks of previously identified objects.
- > This keeps a clear record of areas already segmented and directs focus to hidden regions.

Experimental Results

Dataset	Layer Method	l IoU / AP	2 IoU / AP	3 IoU / AP	4 IoU / AP	5 IoU / AP
Intra-AFruit	DIS	89.5 / 90.7	81.6 / 82.6	52.4 / 52.6	9.8 / 12.4	0.5 / 2.0
	Ours	94.3 / 94.7	87.4 / 88.2	76.2 / 77.3	26.7 / 27.6	7.2 / 7.4
ACOM	DIS	31.6 / 34.8	26.6 / 28.7	1.6 / 10.2	0.2 / 6.0	0.1 / 2.5
	Ours	57.1 / 57.8	44.8 / 45.4	28.8 / 30.0	12.2 / 14.2	1.9 / 3.6
MUVA	DIS	68.2 / 71.5	19.3 / 27.3	0.1 / 8.6	0.2 / 3.4	0 / 0.5
	Ours	77.0 / 79.3	48.7 / 51.2	25.4 / 27.8	8.5 / 9.9	1.0 / 1.1

Comparison with diffusion-based segmentation model [32] without cumulative occlusion learning. Ours exhibits great improvement in deeper-layer scenes.

	Intra-AFruit		ACOM		MUVA	
Method	AP w/	AP w/o	AP w/	AP w/o	AP w/	AP w/o
	Layer	Layer	Layer	Layer	Layer	Layer
PointRend [12]	N/A	70.9	N/A	22.0	N/A	38.9
AISFormer [30]	N/A	70.4	N/A	34.9	N/A	49.7
PLIn [1]	42.2	78.9	3.9	17.0	16.3	47.3
Ours	84.6	92.6	45.4	65.5	53.1	55.7

Comparison with category-specific segmentation models. Despite being trained on class-agnostic data, ours surpasses those trained on category-labelled data.

Our approach considers the **diversity** of possible amodal masks, especially for occluded regions (indicated by dashed circles).

-- Dashed circles indicate objects that missed being predicted.

Our approach performs better at segmenting objects/providing more plausible amodal masks than others.