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Abstract

To fully understand the 3D context of a single image, a visual system must be able to
segment both the visible and occluded regions of objects, while discerning their occlu-
sion order. Ideally, the system should be able to handle any object and not be restricted to
segmenting a limited set of object classes, especially in robotic applications. Addressing
this need, we introduce a diffusion model with cumulative occlusion learning designed
for sequential amodal segmentation of objects without specifying their categories. This
model iteratively refines the prediction using the cumulative mask strategy during diffu-
sion, effectively capturing the uncertainty of invisible regions and adeptly reproducing
the complex distribution of shapes and occlusion orders of occluded objects. It is akin to
the human capability for amodal perception, i.e., to decipher the spatial ordering among
objects and accurately predict complete contours for occluded objects in densely layered
visual scenes. Experimental results across three amodal datasets show that our method
outperforms established baselines. The code is available at github.com/saraao/SAS.

1 Introduction
Robots often encounter unfamiliar objects in ever-changing unstructured environments such
as warehouses or homes [29]. These scenarios require systems capable of manipulating
objects based on their complete shape and occlusion relationships rather than their visibility
or category [2, 7, 31]. However, most state-of-the-art amodal segmentation methods [1,
8, 14, 30], which are usually constrained by the need for class-specific data, struggle to
generalize to unseen objects and are susceptible to misclassification.

We introduce a novel diffusion model for sequential amodal segmentation that does not
rely on object categories. Our approach transcends traditional single or dual-layer prediction
limitations [11, 16, 21] by enabling the simultaneous segmentation of unlimited object layers
in an image. In addition, our framework generates multiple plausible amodal masks for each
object from a single input image, contrasting with prior approaches that depend on multiple
ground truths to achieve varied results [9, 24, 32]. Tailored to the amodal task, our method
requires only a single ground truth per object during training to capture the diversity of
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Figure 1: The cumulative mask and amodal mask predictions for an input image. Our method
can generate reliable amodal masks layer by layer and allows multiple objects per layer.

occlusions, overcoming the limitations of existing amodal datasets that typically provide
only one annotation per object and neglect the variability in invisible regions.

Our framework takes an RGB image as input and sequentially predicts the amodal masks
for each object, as illustrated in Fig. 1. The iterative refinement process of our proposed
algorithm, inspired by human perception mechanisms for invisible regions [26], leverages
preceding identified items to infer subsequent occluded items. Specifically, it employs a
cumulative mask, which aggregates the masks of previously identified objects. This strat-
egy allows the model to maintain a clear record of areas already segmented, directing its
focus toward unexplored regions. By focusing the prediction effort on uncertain or occluded
regions, our approach improves the accuracy and reliability of the amodal segmentation pro-
cess. We validate our approach through comprehensive ablation studies and performance
benchmarking across three amodal datasets, demonstrating its superiority in handling com-
plex sequential amodal segmentation challenges.

The main contributions of our work are:

• A new sequential amodal segmentation method capable of predicting unlimited layers
of occlusion, enabling occlusion modelling in complex visual scenes.

• Occluded shape representation which is not based on labelled object categories, en-
hancing its applicability in diverse and dynamic settings.

• A diffusion-based approach to generating amodal masks that captures the uncertainty
over occluded regions, allowing for diverse segmentation outcomes.

2 Related Work
Amodal segmentation with order perception requires segmentation of the entire objects
by including both visible and occluded regions while explicitly resolving the layer order of
all objects in the image. Establishing layering of objects allows for a comprehensive un-
derstanding of the scene and the spatial relationships between objects, which is essential for
tasks such as autonomous driving, robot grasping, and image manipulation [2, 13, 38]. Cur-
rent amodal segmentation methods mainly assess occlusion states of individual objects [6,
21, 25, 28] or between pairs [2, 11, 35], but tend to ignore the global order in a complex
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scene, such as the relationship between independent groups. While some work [1, 38] has be-
gun to address amodal segmentation with perceptible order, they fall short for class-agnostic
applications due to design constraints on category-specific dependencies.

Class-agnostic segmentation detects masks without relying on pre-learned category-
specific knowledge. It is vital for scenarios where comprehensive labelling is resource-
intensive or when encountering unseen categories [22, 29]. However, amodal segmentation
approaches usually depend on predefined class labels and thus have limited ability to handle
unknown objects [14, 18]. While there are a few methods which consider the class-agnostic
amodal segmentation, [2] is for RGB-D images with depth data rather than RGB images,
[5] relies on the bounding box of the object as an additional input to predict amodal masks,
[39] treats amodal masks prediction and ordering as separate tasks thus designs the methods
individually, and other requires additional inputs for prediction such as visible mask [19, 37].

Segmentation with diffusion models has recently attracted interest as its ability to cap-
ture complex and diverse structures in an image that traditional models might miss [4, 15, 33,
34]. Particularly in medical imaging, diffusion models are used to generate multiple segmen-
tation masks to simulate the diversity of annotations from different experts [9, 24, 32, 36].
However, these methods are designed for the visible part of images and do not adequately
address the diversity of predictions required for the hidden part of objects.

3 Problem Definition
Our goal is to amodally segment multiple overlapping objects within an image without object
class labels, while determining the occlusion order of these objects. Specifically, for a given
RGB image I, the goal of our sequential amodal segmentation approach is two-fold. First, to
produce a collection of amodal segmentation masks {Mi}N

i=1, where each mask Mi represents
the full extent of the corresponding object Oi within the scene—this includes both visible and
occluded regions. Second, to assign a layer ordering {Li}N

i=1 to these objects based on their
mutual occlusions, thereby constructing an occlusion hierarchy.

The layer variable Li adheres to the occlusion hierarchy defined by [1]. The bi-directional
occlusion relationship Z(i, j) indicates if Oi is occluded by O j, given by:

Z(i, j) =

{
1, if object Oi is occluded by object O j,

0, otherwise.
(1)

The set Si comprises indices of those objects occluding Oi, is defined by Si = { j|Z(i, j) =
1}. Subsequently, the layer ordering Li for each object Oi is computed based on:

Li =

{
1, if Si = /0,
1+max j∈Si L j, otherwise.

(2)

The ultimate goal is to derive an ordered sequence of amodal masks τ = ⟨M1, . . . ,MN⟩
that correctly represents the object layers in image I.

4 Methodology
The architecture of our proposed model is shown in Fig. 2. Details on the architectural
components, the cumulative guided diffusion model and the cumulative occlusion learning
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Figure 2: Architecture of our model. Our model receives an RGB image as input and predicts
multiple plausible amodal masks layer-by-layer, starting with the unoccluded objects and
proceeding to deeper occlusion layers. Each layer’s mask synthesis receives as input the
cumulative occlusion mask from previous layers, thus providing a spatial context for the
diffusion process and helping the model better segment the remaining occluded objects.

algorithm are discussed in Sections 4.1 and 4.2, respectively.

4.1 Diffusion-based Framework
Cumulative mask. We introduce the cumulative mask—a critical innovation that incor-
porates the spatial structures of objects, facilitating the understanding of both visible and
occluded object parts. The cumulative mask aggregates the masks of all objects which are
in front of (and potentially occluding) the current layer. Specifically, the cumulative mask
for an object Oi with layer order Li encompasses the masks of all objects with a layer order
lower than Li, thereby representing the cumulative occlusion up to that layer. For each object
Oi with its amodal mask Mi and layer order Li, the cumulative mask CMi is formalized as:

CMi =
⋃

{ j|L j<Li}
M j, (3)

where
⋃

denotes the union operation, CMi is the cumulative mask for object Oi, M j are
the masks of objects with a lower layer order L j than that of Oi, reflecting the cumulative
occlusion encountered up to object Oi. CM = ∅ denotes no prior occlusion and is used for
the fully visible objects in L1.

Cumulative guided diffusion. We enhance denoising diffusion probabilistic models
(DDPMs) [10, 20] to address the unique challenge of understanding occluded regions for
amodal segmentation. The diffusion process is informed by a static representation of the in-
put image and the cumulative mask from previous layers. The diffusion process generates an
amodal mask for the current layer’s objects, which is then added to the cumulative occlusion
mask to generate the next layer.

Following the standard DDPMs implementation [10], the diffusion process is modelled
as a Markov chain. The forward process q at time t evolves from the previous step t−1 is:

q(xt |xt−1) :=N (xt ;
√

αtxt−1,(1−αt)I), (4)

where xt is the noisy data at t, αt is the scheduler which determines the noise variance at
each step, and I is the identity matrix.

The reverse process, which is a learned neural network parameterized by θ , endeavours
to reconstruct the original data from its noisy version, thus performing denoising:

Citation
Citation
{Ho, Jain, and Abbeel} 2020

Citation
Citation
{Nichol and Dhariwal} 2021

Citation
Citation
{Ho, Jain, and Abbeel} 2020



AO, KE, EHINGER: SEQUENTIAL AMODAL SEGMENTATION 5

pθ (xt−1|xt) :=N (xt−1; µθ (xt , t),Σθ (xt , t)), (5)

where the parameters of mean and variance are µθ and Σθ .
As proven in Ho et al. [10], xt−1 can be computed from xt :

xt−1 =
1
√

αt
(xt −

1−αt√
1− ᾱt

εθ (xt , t))+σtz (6)

where z ∼ N (0,I), ᾱt := ∏
t
s=1 αs, εθ is a neural network function that learns noise predic-

tion, and σt is the standard deviation schedule.
We inform our model with the input image and its dynamically updated cumulative mask

at each depth layer. This allows the model to recover the occluded objects progressively
based on previously learned context. We achieve this by concatenating a given image I,
the cumulative mask CMi and amodal mask Mi for objects in layer Li along the channel
dimension, and define:

Xi := I⊕CMi⊕Mi (7)

The forward processing of q adds noise only to the amodal masks, keeping the input image
and the corresponding cumulative mask unaltered. For a given image I and cumulative mask
CMi, we only add noise to the amodal mask Mi:

Mi,t =
√

ᾱtMi +
√

1− ᾱtε, ε ∼N (0,I) (8)

Since we can define Xi,t := I⊕CMi⊕Mi,t , Equation 6 is modified as,

Mi,t−1 =
1
√

αt
(Mi,t −

1−αt√
1−α t

εθ (Xi,t , t))+σtz (9)

where z∼N (0,I). The reverse process aims to reconstruct the noise-free amodal mask from
its noisy counterpart, effectively denoising the mask at each timestep as t decreases.

The neural network’s parameters are trained to minimize the difference, measured by
the Kullback-Leibler divergence, between the forward and reverse distributions across all
timesteps. The loss function is expressed as:

L(θ) = Et,Mi,ε

[
∥ε− εθ (

√
ᾱtMi +

√
1− ᾱtε, t)∥2

]
, (10)

where ε is the true noise, and εθ is the model-predicted noise. The training process optimizes
θ by minimizing the mean squared error between the true and predicted noise, facilitating a
precise recovery of the amodal mask through the reverse diffusion sequence.

During inference, the model utilizes the learned reversal mechanism to generate multiple
plausible amodal masks by sampling from a standard Gaussian distribution and conditioning
on each object’s unique context:

M(k)
gen,i = fθ (N (0,I), I,CMi), k = 1, . . . ,K, (11)

where fθ represents the trained generative function of the model, and M(k)
gen,i is the k-th gener-

ated amodal mask prediction for the object Oi. This process allows the generation of multiple
plausible occlusion masks for each object layer.
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4.2 Cumulative Occlusion Learning

Lack of spatial contextual awareness of surrounding objects in amodal segmentation can
yield inaccurate or incomplete scene interpretations. To address this, we propose the cu-
mulative occlusion learning algorithm, which employs a hierarchical procedure that learns
to predict amodal masks in an order-aware manner. It operates by accumulating visual in-
formation, where the history of observed data (previous segmentation masks) influences the
perception of the current data (the current object to segment). This strategy is akin to human
perception, where the understanding of a scene is constructed incrementally as each object
is identified and its spatial relation to others is established.

Training. We initiate with an empty cumulative mask (CM0) and an image I with N
layers. The model proceeds iteratively, predicting the amodal mask M̂i for each layer while
updating the cumulative mask using ground truth amodal masks to ensure the accuracy of the
spatial context during training. Note that the diffusion is applied solely to the amodal mask
predictions, while the image I and the cumulative mask CM remain intact. This cumulative
strategy enhances accuracy by incorporating occlusion context into each layer in the learning
process, enhancing the model’s spatial understanding. Alg. 1 shows the complete training
process. Notably, we introduce a predictive step for a layer N +1, which trains the model to
expect a blank mask after all object layers have been identified and segmented. This ensures
that the model learns to identify the last layer with any partially-visible objects and does not
continue to hallucinate fully-occluded objects behind these.

Algorithm 1 Training Algorithm for cumulative occlusion learning
Input: Image I with number of N layers
Output: Ordered sequence of amodal masks τ = ⟨M̂1,M̂2, . . . ,M̂N⟩
Initialize CM0 to a blank mask; Initialize the ordered sequence τ as an empty list
for i = 1 to N do

Input to model: I, CMi−1; Predict amodal mask M̂i for objects in layer Li; Update CMi ← CMi−1 ∪Mi (Ground Truth);
Append M̂i to the sequence τ

end for
Perform a final prediction M̂N+1 with I and CMN
assert M̂N+1 is a blank mask
return τ

Inference. Different from training, the inference phase needs to operate without avail-
able ground truth. Thus, it selects the most representative amodal mask from multiple predic-
tions generated by the diffusion model to update the cumulative mask. Inference commences
with an image I and aims to reconstruct an ordered sequence of amodal masks by layer. For
each layer, a set of K diffusion-generated amodal mask predictions are evaluated to select
the most representative amodal mask M̂i for that layer. The selection criterion is based on
the minimum absolute difference from each mask to the mean of non-null predictions, while
ensuring spatial continuity between consecutive layers. The selected mask is then utilized to
update the cumulative mask for subsequent layers’ predictions. The process continues iter-
atively for an image I until a stopping criterion is met. The stopping criteria are established
to avoid over-generation of invalid predictions when (1) reaching the maximum number of
layers, or (2) all predicted masks are empty or the predicted object pixels of the selected
mask are below a threshold area.

Alg. 2 shows the complete inference process, where the stopping criteria Nmax and Areamin
are determined by the maximum number of layers and the minimum object area present in
the corresponding training data, respectively. The appendix discusses the difference between
training and inference in more detail.
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Algorithm 2 Inference Algorithm for cumulative occlusion learning
Input: Image I, Maximum number of layers Nmax, Minimum object pixel area Areamin
Output: Ordered sequence of amodal masks τ = ⟨M̂1,M̂2, . . .⟩
Initialize CM0 to a blank mask; Initialize the ordered sequence τ as an empty list; Initialize i = 1
while i≤ Nmax do

Generate K mask predictions {M̂1
i ,M̂

2
i , . . . ,M̂

K
i }; Compute mean map Mi from non-null M̂ j

i ; Select M̂i with minimum ||M̂k
i −

Mi||; Enforce spatial integrity: if M̂i ∩ M̂i−1 =∅, reassign M̂i to the same layer as M̂i−1
if M̂i is null or M̂i.area < Areamin then Break
end if
Update CMi← CMi−1 ∪ M̂i; Append M̂i to τ; i← i+1

end while
return τ

In summary, cumulative occlusion learning allows the network to learn a robust internal
representation of class-agnostic amodal object shape through occlusion, and to recognise the
depth layer ordering of objects in scenes. This approach means the model can handle any
arbitrary number of layers of occlusions, because it automatically learns to recognise when
all visible objects have been segmented. Moreover, by preserving the input image and cu-
mulative mask unaltered during the diffusion perturbations, our model maintains the fidelity
of the contextual information, which is crucial for generating accurate amodal predictions.

5 Experiments
Datasets. We focus on amodal datasets highly relevant to robotics applications. Intra-AFruit,
ACOM and MUVA [1, 14] include objects such as fruits, vegetables, groceries, and everyday
products, effectively simulate the kind of visual clutter and occlusion challenges encountered
in industrial robotics, making them ideal for our study. We enhanced these three datasets
tailored for novel sequential amodal segmentation tasks, with layer structure annotations and
class-agnostic masks. All images have been downsampled to a resolution of 64 × 64 pixels
for computational efficiency. To eliminate indistinguishable or misleading ground truth data,
we excluded images with post-downsampling visible object areas under 10 pixels. More
details of the image processing are provided in the appendix.
Implementation Details. We set the timestep T=1,000 with a linear noise schedule for all
the diffusion models. The models were trained using the AdamW optimizer [17] at a learning
rate of 0.0001 and a batch size of 256. The other hyperparameters of the diffusion models
follow the implementation in [20].
Evaluation metrics. The performance of class-agnostic segmentation is generally measured
by comparing predicted masks with ground truth annotations [3, 23, 27]. We adopted two
commonly used metrics: intersection over union (IOU) and average precision (AP).

5.1 Architecture Analysis
Number of generated amodal masks. Our method efficiently generates multiple amodal
masks for each object (see Fig. 3a), capturing uncertainty and diverse occlusions without
requiring varied annotations per image. This is particularly useful for amodal tasks consid-
ering occluded areas, where manual annotation is very expensive and synthetic images often
provide only the sole ground truth.

While an arbitrary number of masks could be generated, we set to 3 masks per layer
for inference in subsequent experiments, as this setting balances performance with compu-
tational demand on the ACOM dataset (see Tab. 1).
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Figure 3: (a) Our approach considers the diversity of possible amodal masks, especially for
occluded regions (indicated by dashed circles). (b) Example of misjudgement of the order of
occluded objects in adjacent layers. Layer 3’s prediction reflects Layer 4’s ground truth and
vice versa. This can also be a challenge for human perception.

Metric Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Ensemble IOU AP IOU AP IOU AP IOU AP IOU AP
k=3 57.1 57.8 44.8 45.4 28.8 30.0 12.2 14.2 1.9 3.6
k=5 56.7 57.5 44.3 44.9 28.8 29.7 12.7 14.3 2.3 3.7
k=7 56.8 57.5 44.7 45.4 29.4 30.0 12.6 14.1 2.6 3.6
k=9 56.9 57.7 44.4 45.1 29.5 30.2 12.9 14.2 2.4 3.7

Table 1: Ablation study for generating different numbers of masks during inference.

Selection of cumulative mask. The inference process could give multiple predictions
for each layer, so there might be two options to update the cumulative mask for a given layer:
(1) use one most representative prediction for that layer. We select the prediction with the
minimum absolute difference from the mean of all predictions as the one. (2) use the mean
of all predictions for that layer to form a mean mask. While the mean mask more explicitly
takes into account all predictions, the risk is that when a prediction incorrectly gives an
object that does not belong in that layer, the mean mask reacts to that as well. For example,
a previous prediction showing an object in the next layer may cause the next prediction to
ignore that object, because the object is already included in the given mean mask.

Therefore, in the inference process, the cumulative mask employs the most representa-
tive amodal mask (with the minimum absolute difference from the mean mask) rather than
directly using the mean mask of all predictions for that layer. This avoids confusion due to
the simultaneous prediction of objects in different layers. Tab. 2 shows the superiority of our
mask selection method over using the mean mask for occluded layers on ACOM dataset.

Choice of L1 L2 L3 L4 L5
Cumulative Mask AP

Mean mask 57.7 43.1 27.9 10.4 2.8

Selective mask 57.8
(+0.1)

45.4
(+2.3)

30.0
(+2.1)

14.2
(+3.8)

3.6
(+0.8)

Table 2: For predicting occluded objects (Layer L>1), the mask we selected is more suitable
for constructing cumulative masks than using the mean mask directly.

Failure analysis. A common challenge arises from errors in sequential prediction, par-
ticularly determining which of two objects is in front of the other when the overlapping
region is occluded by a third object. This may lead to objects being predicted in incorrect
layers, as illustrated in Fig. 3 (b). Synthetic images can amplify this challenge due to fewer
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spatial cues (such as height in the image plane or scene semantics) to disambiguate occluded
object order. Our cumulative occlusion learning mitigates the impact of these errors by con-
sidering the cumulative mask for all preceding layers. We demonstrate the robustness of our
method to such failures through additional noise introduction experiments in the appendix.

5.2 Comparisons with Other Methods
We benchmark against DIS [32], a leading diffusion-based segmentation method. For com-
parison, we trained distinct DIS models for each layer under the same iterations and eval-
uated the segmentation results separately for each layer. Tab. 3 comprehensively compares
our method and the improved DIS across different layers on three amodal datasets. The per-
formance of the MUVA dataset after five layers is omitted because the performance of both
models approaches zero. The superiority of our method is particularly evident in deeper
layers, where our method maintains reasonable performances, whereas DIS shows a marked
decline, especially in the MUVA dataset. These results highlight the robustness of cumula-
tive occlusion learning in handling layered occlusions across various datasets, particularly in
more complex scenarios involving multiple layers of object occlusion. Moreover, our itera-
tive approach adapts to variable layers and learns a representation that can generate masks
for any layer, which means it has fewer computing demands than training separate models
to predict each layer.

Due to the lack of class-agnostic amodal segmentation methods with layer perception,
we compare against category-specific methods like PLIn for amodal segmentation with oc-
clusion layer prediction [1], AISFormer for amodal segmentation without layer perception
[30], and PointRend for modal segmentation [12]. We trained these comparison models
using category-labelled amodal masks to meet their requirement for category-specific learn-

Layer 1 2 3 4 5

Dataset Method IOU / AP IOU / AP IOU / AP IOU / AP IOU / AP

Intra-AFruit DIS 89.5 / 90.7 81.6 / 82.6 52.4 / 52.6 9.8 / 12.4 0.5 / 2.0
Ours 94.3 / 94.7 87.4 / 88.2 76.2 / 77.3 26.7 / 27.6 7.2 / 7.4

ACOM DIS 31.6 / 34.8 26.6 / 28.7 1.6 / 10.2 0.2 / 6.0 0.1 / 2.5
Ours 57.1 / 57.8 44.8 / 45.4 28.8 / 30.0 12.2 / 14.2 1.9 / 3.6

MUVA DIS 68.2 / 71.5 19.3 / 27.3 0.1 / 8.6 0.2 / 3.4 0 / 0.5
Ours 77.0 / 79.3 48.7 / 51.2 25.4 / 27.8 8.5 / 9.9 1.0 / 1.1

Table 3: Comparison with a diffusion-based segmentation model [32] without cumulative
occlusion learning. Our method exhibits great improvement in complex, deeper-layer scenes.

Dataset Intra-AFruit ACOM MUVA

Method Supervision Framework AP w/
Layer

AP w/o
Layer

AP w/
Layer

AP w/o
Layer

AP w/
Layer

AP w/o
Layer

PointRend Supervised CNN-based N/A 70.9 N/A 22.0 N/A 38.9
AISFormer Supervised Transformer-based N/A 70.4 N/A 34.9 N/A 49.7

PLIn Weakly supervised CNN-based 42.2 78.9 3.9 17.0 16.3 47.3
Ours Supervised Diffusion-based 84.6 92.6 45.4 65.5 53.1 55.7

Table 4: Comparison with category-specific segmentation models. PointRend [12], AIS-
Former [30] and PLIn [1] are trained on category-specific data, whereas our models are
trained using class-agnostic data. We evaluate the models by focusing solely on the segmen-
tation quality, disregarding any category information.
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Image Ground Truth (a) Ours (b) DIS (c) PLIn (d) PointRend

Figure 4: Comparison of predictions on Intra-AFruit (top) and MUVA (bottom) test image
by (b) DIS [32] (c) PLIn [1] (d) PointRend [12] and (a) ours, where (b) and (c) are diffusion-
based methods. Dashed circles indicate objects that missed being predicted. Others fail to
segment objects or provide less plausible amodal masks compared to ours.

ing, while our model is trained on data without category labels. For evaluation, we ignore
category label accuracy for the comparison models, reporting only segmentation accuracy.

We present the AP results considering two scenarios in Tab. 4: with layer prediction,
where segmentation precision is contingent on correct layer assignment, and without layer
prediction, where segmentation is recognized irrespective of layer placement. Despite be-
ing trained on class-agnostic data, our method surpasses category-specific models trained on
category-labelled data. Furthermore, Fig. 4 visually demonstrates our method’s superiority
in amodal mask segmentation. Our approach provides plausible masks even for heavily-
occluded objects, showcasing its enhanced segmentation capability in complex scenes in-
volving multiple layers of object occlusion.

6 Limitation
Our method, while promising for sequential amodal segmentation, faces slow training and
inference speeds due to the inherently computationally intensive nature of diffusion models.
Diffusion models generally require a compression step for computational efficiency, and our
current downsampling approach serves as an effective initial strategy. Future work will aim
to augment efficiency and maintain output quality through super-resolution techniques and
learned compression methods like VAEs, thus extending sequential amodal segmentation to
high-resolution datasets such as KINS [21] and COCOA [39].

7 Conclusion
The task of sequential amodal segmentation is essential for understanding complex visual
scenes where objects are frequently occluded. Our proposed method, leveraging cumulative
occlusion learning with mask generation based on diffusion models, allows robust occlu-
sion perception and amodal object segmentation over arbitrary numbers of occlusion layers.
We demonstrate in three publicly-available amodal datasets that the proposed method out-
performs other layer-perception amodal segmentation and diffusion segmentation methods
while producing reasonably diverse results.
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