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A Detailed Related Work

Label distribution skew poses a challenge in training a model to perform well across all
clients. Numerous works have attempted to address label imbalance, which can be mainly
categorized into four groups: 1) Incorporate Momentum and Adaptive Methods. Many
recent works try to incorporate optimization methods into FL. For example, FedOpt [6] con-
sists of ServerOpt for the server and ClientOpt for the clients, which are used to update
the global and local models, respectively. Both ClientOpt and ServerOpt can be set as any
momentum and adaptive optimizers to enhance performance. 2) Reduce the Bias in Local
Model Updates. When dealing with heterogeneous data, local updates can introduce bias
into the convergence process. Therefore, some methods focus on reducing this bias. SCAF-
FOLD [2] effectively employs control variates, a technique aimed at reducing variance,
to correct client-drift within its local updates. 3) Regularize Local Objective Functions.
Some works attempt to penalize local models that deviate significantly from the global model
by applying regularization to the local objectives. For instance, FedProx [3] employs the Eu-
clidean distance between local and global models as a regularization function to prevent local
models from drifting towards their respective local minima. 4) Consider Alternative Ag-
gregation Methods. The weighting aggregation determines the ultimate convergence point
of the global model. Therefore, recent methods try to design an effective weighting scheme.
For example, FedNova [7] optimizes the number of epochs in local updates and introduces a
normalized averaging scheme to eliminate inconsistencies in objectives.

However, such optimization methods cannot address the fundamental issue of data dis-
tribution heterogeneity, meaning they cannot achieve truly outstanding performance. More-
over, another solution involves generating synthetic data from distributed data sources, as
discussed in previous studies [1, 4, 5]. However, these methods cannot generate high-quality
data or prevent potential privacy leakage, resulting in subpar performance. Different from
the previous approaches, we start by recovering the global data distribution at the local level,
thus aiming to fundamentally address the label imbalance in FL.

B More Implementation Details

We implement all methods using PyTorch. Before training, we utilize Stable Diffusion to
generate synthetic images for each client based on the prompt “A photo of {class}, real
world images, high resolution”. In terms of data volume, for each class, we generate 1.3k
synthetic images for the ImageFruit and ImageNet100 datasets, 100 synthetic images for the
CUB and Cars datasets, and 3k synthetic images for the EuroSAT dataset. For the adaptive
fine-tuning approach, we employ LoRA to fine-tune the Stable Diffusion within each client
using their local data and set the α of U-Net to 0.8.

During the global generalization task, the batch size is set to 128, and the round of com-
munication is set to 200. In each communication round, every client updates their weights
for 5 epochs using the SGD optimizer. During the local personalization task, we select syn-
thetic data for each client based on the categories of their real data. We fine-tune the global
model at each client using their local data for 50 epochs with the SGD optimizer, resulting
in a personalized local model for each client.
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Algorithm 1: Pytorch-like Pseudocode of Our ReGL.

datasets = []
SD = vanilla_Stable_Diffusion()
for client in all_clients:

# use the real images of each client to fine tune the SD individually
adaptive_SD = fine_tuning(real_images, SD)
# use adaptive SD to generate synthetic images
syn_images = adaptive_SD.generation(prompts, noise)
# package the real and synthetic images
all_data = aggregation(real_images, syn_images)
datasets.append(all_data)

# global generalization task
global_model = network()
for com in Rounds:

local_weights = []
# randomly select clients
for client in selected_clients:

# SGD update on real and synthetic images
data = datasets[client]
weights = local_update(data, global_model)
local_weights.append(weights)

# updating the global model by average
global_model = model_aggregation(local_weights)

# local personalization task
local_models = []
for client in all_clients:

# each client fine-tune the model for their personalized tasks
data = datasets[client]
local_weight = local_update(data, global_model)
local_models.append(local_weight)

return global_model, local_models

C More Ablation Studies and Analyses

Local Epochs Here, we increase the computation load per client in each round by ex-
panding the number of local epochs, which we denote as Elocal . We conduct numerous
experiments on ImageFruit and ImageNet100 datasets, and compare our ReGL with previ-
ous algorithms in Tab. 1. It is evident that, when Elocal is set to 1, the performance of all
methods degrades significantly. In this scenario, the number of local updates is too small,
resulting in inadequate model training. Nonetheless, our method continues to exhibit com-
petitive performance, achieving an accuracy of 60.7% on the ImageFruit dataset and 60.1%
on the ImageNet100 dataset with β = 0.01. As we increase the value of Elocal , the perfor-
mance of all methods generally improves. However, excessively large values of Elocal can
lead to overfitting. Therefore, the optimal choice for our method is 5 epochs per round.

Number of Clients To analyze the effect of the number of clients on performance, we
train these methods with different numbers of clients M on ImageFruit and ImageNet100
datasets. Specifically, we set M = {5,50,100} for the ImageFruit and M = {10,50,100}
for the ImageNet100, with a skew degree of β = 0.01. As demonstrated in Tab. 2, when M
increases, the performance of all previous methods experiences a significant decline. This
decline is especially pronounced when M = 100, where the accuracy of previous methods
drops to approximately 10% on ImageFruit and 15% on ImageNet100. We conjecture that
as the number of clients increases, there are more skewed local models, leading to a poorer
aggregated model. However, our method remains robust as M increases, with almost no
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Elocal Methods ImageFruit ImageNet100
β = 0.01 β = 0.5 β = 0.01 β = 0.5

1

FedAvg 23.7 39.2 28.8 33.6
FedNova 27.9 40.6 32.9 37.7
MOON 28.5 41.8 31.8 38.5
Ours 60.7 65.2 60.1 63.2

5

FedAvg 30.1 52.1 37.0 43.9
FedNova 31.9 54.0 43.7 51.3
MOON 33.7 55.9 45.6 53.8
Ours 77.3 79.2 77.2 78.6

10

FedAvg 31.9 52.7 36.5 42.8
FedNova 32.3 53.5 43.9 52.0
MOON 33.1 54.6 47.0 53.1
Ours 76.8 80.2 78.2 77.9

20

FedAvg 30.6 50.6 34.1 43.1
FedNova 31.8 52.3 43.6 53.5
MOON 30.9 51.6 46.2 54.1
Ours 77.0 78.6 76.0 77.2

Table 1: Performance comparison of different local epochs.

Methods ImageFruit ImageNet100
M = 5 M = 50 M = 100 M = 10 M = 50 M = 100

FedAvg 30.1 14.5 9.1 37.0 20.5 13.3
FedProx 30.7 14.9 9.6 38.8 20.8 14.1
FedNova 31.9 18.8 11.7 43.7 22.6 14.9
FedOpt 32.8 19.6 11.9 44.1 23.0 16.8
MOON 33.7 20.2 12.7 45.6 25.9 17.1
Ours 77.3 77.0 76.2 77.2 76.8 75.0

Table 2: Performance comparison of different number of clients.

performance degradation. Based on these results, we can conclude that our method is highly
suitable for scenarios involving a large number of clients. In cases where the number of
clients is particularly high, for instance, exceeding 100, our method outperforms the previous
approaches by about 60%.

Analysis of Class-level Accuracy Label distribution skew can lead to class inconsistency
across clients, so we compare the accuracy of FedAvg and our method for each class before
and after a certain local update on the ImageFruit dataset using the β = 0.01 setting. For
the sake of display, we generate synthetic images for each class in our method to ensure
that the total number of real and synthetic images is 1.3k, which is slightly different from the
settings in our main experiment. The performance is shown in Fig. 1. Here, all local models
on the test set have the same test accuracy before local updates, because these local models
are equivalent to the global model. First, we can observe that in FedAvg, the local model
is restricted to learning samples solely from the majority classes, leading to a sharp decline
in accuracy for the remaining classes. This indicates that label distribution skew can lead
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Figure 1: Class-level accuracy of FedAvg and our method on the skewed ImageFruit dataset.
The blue histogram and the orange histogram represent the number of real and synthetic
images for each class, respectively. The green line and the red line indicate the accuracy of
each class before and after a certain local update, respectively.

(a) Real images (b) Synthetic images generated
by vanilla Stable Diffusion

(c) Synthetic images generated
by adaptive Stable Diffusion

Figure 2: Visualization of real and synthetic images in ImageFruit dataset. While there is
a significant difference between the real images and synthetic images generated by vanilla
Stable Diffusion, adaptive approach can generate synthetic images in the style of real images.

to a biased model, severely impacting global model performance. While in our method, we
eliminate label skew by generating synthetic images for each class, which enables a more
effective local model update. The test accuracy of each class improves after local updates,
resulting in a more robust federated learning system under label distribution skew.
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