LEEET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION i

Appendix

A Detailed Descriptions
A.1 Model Configuration

Sampler. The sampler Sso takes a sequence of T frames as input, composed of a lightweight
feature extractor f, an importance predictor g, and an action classifier 4.

Given T candidate frames v € RT*3*#*W our sampler first spatially downsamples them
to v’ € RT*3*H'*W' \here W < W and H' < H. Then, a 2D image representation network
fi 1 R3>H W'y RP extracts frame-level features, where D denotes the dimensionality of
the feature. Inferring all T frames using f;, a feature map

Z:{fv(vl]),...,fy(v%)} G]RTXD (5)

is constructed, where v/ denotes the i-th frame of v'.
Then, our sampler conducts two downstream tasks using the extracted features z. First,
it estimates the frame importance score py using a regressor i, : R™*P — RT:

ﬁs:{hs(zl)a~-~>hs(zT)}- (6)

Second, it performs the downstream classification task. Using a frame-level classifier A, :
RT*P — RC, it predicts the relevance of each frame t = 1, ..., T for the C classes, and these
predictions are aggregated over the T frames to a video-level prediction by taking the aver-
age:

. 1

Ys = T (he(z1)+ ...+ he(2z7)). @)
Note that A, is used only during training to make the backbone f; learn the label information.
We simply implement & and A, with linear projections followed by a softmax.

Classifier. The classifier f. can be any visual recognition model, such as a 2D or 3D CNN,
or a Transformer, pretrained and frozen throughout the training. During training, f. is used
to compute the importance score, which serves as a pseudo-label to train the sampler Sso by
distilling the knowledge from the classifier f,.

During inference, f. is used to perform the downstream task on a clip v* €
of sampled N frames:

RN><3><H><W

7= fc(v). ®)
Our goal is to train the sampler Sso so that the frozen classifier f. predicts § close to the
ground truth label y, the one-hot encoding of the true label y.

A.2 Dataset

ActivityNet-v1.3 includes 10,024 training and 4,926 validation videos. The average
video length is 117 seconds with an average of 3,335 frames, covering 200 categories. Mini-
Kinetics, a subset of Kinetics400, comprises 121,215 training and 9,867 validation videos.
The videos have an average duration of 10 seconds with an average of 261 frames, covering
200 categories. Mini-Sports1M, a subset of SportsIM [10], consists of 14,586 training and
4,855 validation videos. The average video length is 330 seconds with an average of 4,467
frames, covering 487 action classes. COIN is composed of 11,827 YouTube videos related
to 180 different tasks. The videos have an average length of 141 seconds with an average of
4,009 frames.

ii LEEET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION

NIT

Dataset Backbone Method 8/30 16/60 327100

ResNet OCSampler | 73.52% 74.00% 74.17%

e . SOSampler | 73.79% 74.46% 74.65%
Mini-Kinetics

TimeSformer OCSampler | 79.13% 78.05% 76.33%

SOSampler | 79.93% 80.44% 81.32%

ResNet OCSampler | 78.69% 79.79% 80.06%

COIN SOSampler | 79.13% 80.21% 81.02%

TimeSformer OCSampler | 80.88% 80.90% 81.20%

SOSampler | 86.52% 87.37% 88.08%

Table I: Experiment on short video datasets for large N and 7. The best performing
model is bold-faced.

A.3 Implementation Details

We follow the preprocessing steps outlined in [24]. We sample T frames from each video
as a training example. All frames are randomly scaled and cropped to 224 x 224, followed by
random flipping for augmentation. We then reduce the resolution of each frame to 128 x 128
before feeding them into our sampler Sso. During inference, we uniformly sample 7" frames
from a test video, resize them to 128 x 128, and feed them to the sampler Sso. Then, we feed
the original 224 x 224 images of the selected frames to f,.

For the pretrained classifier weights, we utilize the pretrained weights provided by [11]
on the ActivityNet-v1.3 and Mini-Kinetics datasets with the ResNet50 classifier. For other
datasets and architectures, we train the classifier from scratch.

To train our SOSampler, we use a learning rate of 10~ and set A = 0.99 for all datasets.
We optimize our loss function in Eq. (4) using the stochastic gradient descent (SGD) opti-
mizer with a momentum of 0.9 and weight decay set to 10~*. We employ cosine annealing
as a learning rate scheduler without warm-up.

We implement our method using PyTorch and train on a single NVIDIA A100 GPU with
40GB of memory.

B Additional Results

B.1 Comparison with Large N and 7 on Short Videos

In short videos, as T increases, the FPS becomes significantly higher, weakening our
assumption of independence between frames. Therefore, our approach does not sufficiently
improve the performance as N and T increase. However, it consistently shows an upward
trend and still outperforms OCSampler in all settings. This result suggests that our method
is still superior to the existing method, even in the FPS range where our assumption of
independence between frames is weak.

B.2 Computational Efficiency

While GFLOPs serve as a metric for measuring the efficiency of a model, it does not
provide the actual running time. Therefore, we additionally compare the actual inference

LEEET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION

iii

80
- %
* Sk
e 4
* i ’I'* - + . B
/ - »
s .
75 £ 2 To* e 85
3 s % S
= " X
< ! < ¢
(=] K v . o- Ay *
E F 4 v 4. E ¢
. ’
o , 4
70 S v ®- LiteEval #- VideolQ 80
. y, 4 AdaFramel0 FrameExit
A AdaFrame5 @ AdaFocus
¥ ListenToLook ®- OCSampler ®- Uniform
sCsampler %- SOSampler ¢ 4~ OCSampler
A -®- AR-Net -%- SOSampler
65 75
20 60 80 100 20 30 10 50 60 70 80
GFLOPs/Video GFLOPs/Video

Figure I: Mean Average Precision (%) vs. efficiency (GFLOPs) on ActivityNet. With a
ResNet classifier (leff), OCSampler [24] is the second best after ours. With TimeSformer in
(right), however, it even underperforms than the uniform sampling. On the other hand, our
approach outperforms all baselines with both ResNet50 and TimeSformer.

time, namely throughput, by measuring the video processing speed per second. The exper-
iments are conducted using ResNet50 on the ActivityNet-v1.3 dataset, and all experiments
are performed on a single NVIDIA Xp GPU. As seen in Tab. I, we demonstrate improved
accuracy of our proposed method (SOSampler) over existing methods, achieving a reduction
of approximately 16.3% in GFLOPs and a 15% enhancement in throughput.

Methods mAP GFLOPs (T\t,‘ir(;’:(i}/‘f)“t
AdaFrame [44] 71.5% 79.0 6.4
FrameExit [11] 76.1% 26.1 19.1
AR-Net [26] 73.8% 334 23.1
AdaFocus [41] 75.0% 26.6 449
OCSampler [24] 77.2% 25.8 107.7
SOSampler (ours) 77.3% 21.6 123.9

Table II: Comparison of computational overhead in GFLOPs and throughput. (ResNet50
on ActivityNet)

B.3 Performance and Efficiency Curve

In Fig. I(left), we compare our approach to existing methods with varying computational
costs, with a varied number of sampled frames N = 2,3,4,6 on a ResNet50 [12] classifier.
Our method leads all other compared methods, using significantly lower computational cost
than most baseline methods, showing marginal improvement over OCSampler [24].

We additionally conduct a performance and efficiency comparison using the TimeS-
former [2] backbone. The experiment, like the one performed on ResNet50, measures the
changes in computational cost for N = 2,3,4,6 and the comparison is exclusively with OC-
Sampler, previously the highest-performing model. As shown in Fig. I(right), within the
TimeSformer architecture, our model significantly improves the performance over OCSam-
pler.

iv LEEET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION

C Sampling Cases

In Sec. 4.1, we introduce 7; and demonstrate that it approximates 7, through Tab. 1 and
Tab. 2. By showing that SOSampler, which learns 7, instead of 7, outperforms existing
methods across various datasets and architectures, we demonstrate the effectiveness of 7.

In this section, for a better understanding of our approach, we visually illustrate multiple
examples showing that SOSampler successfully approximates 7, as well as some cases where
it does not.

C.1 Illustration of Successful Sampling

Figure II: Sampling policy comparison with 7;, 7, for success cases of SOSampler.

In Fig. II, we present qualitative examples of successful sampling by SOSampler, com-
paring the results with those of 7, and 7,. For the “Riding Camel” example, although the
4th and 5th frames feature a camel, they are not selected due to the lack of clear information
about riding compared to other scenes. In the “Braiding Hair” example, 7, and 7, choose
slightly different frames, with SOSampler following the selection pattern of 7;. In the case

LEEET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION v

of “Peeling Potatoes”, it is observed that all policies effectively sample only the portions
where potatoes appear.

These results demonstrate that 7, and 7, possess similar policies. Additionally, they
indicate that SOSampler can effectively learn the policy of 7.

C.2 Failure Cases

Figure III: Sampling policy comparison with 7;, 7, for failure cases of SOSampler.

As shown in Fig. II, in most cases, Sso demonstrates a sampling policy similar to 7;. In
Fig. III, however, we showcase a few scenarios where they significantly differ. In the case
of the “Doing Crunches”, 7, effectively samples the segments where a man is performing
crunches, while Sso samples scattered frames throughout the video. For the “Fixing the
Roof”, m; appropriately selects scenes of repairing damaged roofs, while Sso chooses un-
related frames as well. In the case of “Starting a Campfire”, Sso seems to summarize the
video well, but the sampling policy of 7, indicates that the classifier f. prefers the scenes of
installing firewood and starting the fire. Interestingly, in the “Springboard Diving” example,
Sso even appears to better emulate 7, than 7, does.

