Scalable Frame Sampling for Video Classification: A Semi-Optimal Policy Approach with Reduced Search Space

Junho Lee¹, Jeongwoo Shin¹, Seung Woo Ko^{1,2}, Seongsu Ha^{1,3}, Joonseok Lee^{1,4} ¹ Seoul National University 2 (b LG AI Research 3). Twelve Labs 4 Google Research

Introduction **Controduction Controllering Policy**

Optimal Policy (π_{o})

-
- \bullet Optimal set: The *N* frames selected by the optimal policy (π_o) is defined as optimal set.
- its $O(T^N)$ complexity makes it computationally infeasible.

Semi-Optimal Policy (π_s)

- problem is simplified to $O(T)$.
-
- The importance score of each frame is defined as $c(v_t) = \max_{i=1}^{\infty}$

Experimental Validation of π_s

Problem statement

- **Selecting** *N* **frames from** *T* **candidates, to avoid redundant** computation and to enhance video understanding capability.
- ●However, **exploring all possible combinations** of frames requires $\mathit{O}(T^N)$ operations, which is computationally infeasible for **large N** and **T**.

[1] Lin, Jintao, et al. "Ocsampler: Compressing videos to one clip with single-step sampling." CVPR. 2022.

- \bullet We propose a semi-optimal policy (π_{s}) that reduces the search space to O(*T*) by **evaluating frames independently**.
- ●This approach allows for scalable frame sampling even for large *N* and *T* values.

●Definition: Select *N* frames from *T* candidates that maximize the classifier's confidence on the correct label. • Finding the optimal set and using it as a label to train the model can be the easy way to learn π_o , but

Our Contributions

- \bullet **New Sampling Policy:** We propose the **Semi-Optimal Policy** (π_s) , which reduces search space from $O(T^N)$ to $O(T)$ by independently evaluating frames.
- ●**New Sampler:** We propose **SOSampler**, which learns the semioptimal policy $(\pi_{_S})$ instead of the optimal policy.
- ●**Performance:** Our method achieves state-of-the-art performance across multiple datasets and backbone architectures.
- ●**Scalability:** Unlike previous methods, our approach demonstrate robust performance gains even with large N and T values.

Limitations of Previous Research

●Definition: Select *N* frames from *T* candidates with the highest importance scores, when evaluated independently. $i = 1, ..., C$ $f_c(v_t)]_i$

- ●Limited to small-scale scenarios
- Most studies have focused on small N and T settings ($N \le 6, T \le 10$).
- Even for these limited cases, exploring the complete search space is still complex.
- Reinforcement Learning (RL) approaches
- Previous works tried to overcome the search space challenge using **reinforcement learning (RL)**, treating the sampler as an agent and the classifier as the environment, optimizing frame selection through rewards.
- Challenge: RL approaches still operate within the same $O(T^N)$ space, limiting their scalability for large-scale video datasets.

- ●**Performance**: SOSampler outperforms other methods on various dataset for both small and large N , T settings.
- **Scalability**: As N and T increase, OCSampler^[1] struggles to optimize effectively, often performing worse than uniform sampling in large-scale scenarios. SOSampler, in contrast, maintains high performance even for large N and T values.

Our Solution: Semi-Optimal Policy (*π^s* **)**

●**Frame Independence Assumption**: Assessing the importance score of each frame independently, the sampling

●We estimate the relevance between adjacent frames (Figure 1) and conclude that **independence can reliably be**

 \bullet To verify that π_s approximates π_o , we compare performance (Table 1) and selected frames (Table 2).

 \bullet SOSampler: A lightweight sampler that learns the semi-optimal policy (π_s) instead of the optimal policy $(\pi_o).$

 $\bullet L_{LG}$: Penalizes when the predicted frame class differs from the true label, ensuring each frame reflects the video-level class.

Dataset	Backbone	Method	N/T		
			8/30		$16/60$ 32 / 100
ActivityNet	ResNet ₅₀	Uniform	77.1%	79.4%	80.4%
		OCSampler	78.0%	79.1%	80.1%
		SOSampler $ 78.7\% $		80.2%	81.1%
	TimeSformer	Uniform	88.5%	89.9%	90.3%
		OCSampler	85.0%	85.3%	84.5%
		SOSampler 89.5%		90.1%	90.5%
Mini-Sports1M	ResNet50	Uniform	46.9%	48.8%	49.1%
		OCSampler	48.6%	49.6%	50.0%
		SOSampler $ 50.0\% $		51.1%	51.5%
	TimeSformer	Uniform	53.9%	55.6%	56.8%
		OCSampler	48.9%	49.6%	50.0%
		SOSampler 55.1% 56.9%			57.8%

Table 5: Experiment on long videos for large N and T . The best performing model is **bold-faced**.

Table 4: Comparison on Mini-Sports1M and COIN Comparison on for small N and T. The best performing model is **bold-faced**.

Table 1: Performance of π_o and π_s on ActivityNet and Mini-Kinetics. Relative improvement from π_u is provided on the right.

Table 2: Sampling Fidelity. Note that we report the expected value of the sampling fidelity for random sampling.

Table 3: Comparison on ActivityNet-v1.3 and Mini-Kinetics for small N and T . The best performing model is **bold-faced**.

- **assumed up to 1 fps**, with 5 fps being borderline.
-

SOSampler

Training Strategy

-
- \bullet L_{SO} : Penalizes when the estimated importance score differs from the pretrained classifier's score.
-

Performance Comparison