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Introduction

Problem statement

e Selecting N frames from T candidates, to avoid redundant
computation and to enhance video understanding capability.

e However, exploring all possible combinations of frames
requires O(T") operations, which is computationally infeasible
forlarge N and T.

Limitations of Previous Research

e | imited to small-scale scenarios
- Most studies have focused on small N and T settings (N < 6,T < 10).

- Even for these limited cases, exploring the complete search space is
still complex.

e Reinforcement Learning (RL) approaches

- Previous works tried to overcome the search space challenge using
reinforcement learning (RL), treating the sampler as an agent and the
classifier as the environment, optimizing frame selection through
rewards.

- Challenge: RL approaches still operate within the same 0(T") space,
limiting their scalability for large-scale video datasets.

Our Solution: Semi-Optimal Policy (r,)

e We propose a semi-optimal policy (rt.) that reduces the search
space to O(T) by evaluating frames independently.

e This approach allows for scalable frame sampling even for
large N and T values.
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Our Contributions

e New Sampling Policy: We propose the Semi-Optimal Policy (),
which reduces search space from 0(T") to O(T) by
independently evaluating frames.

e New Sampler: We propose SOSampler, which learns the semi-
optimal policy (r,) instead of the optimal policy.

e Performance: Our method achieves state-of-the-art performance
across multiple datasets and backbone architectures.

e Scalability: Unlike previous methods, our approach demonstrate
robust performance gains even with large N and T values.

Sampling Policy

Optimal Policy (mr,)
e Definition: Select N frames from T candidates that maximize the classifier's confidence on the correct label.
e Optimal set: The N frames selected by the optimal policy (1,) is defined as optimal set.

e Finding the optimal set and using it as a label to train the model can be the easy way to learn r,, but
its O(T") complexity makes it computationally infeasible.
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. Assessing the importance score of each frame independently, the sampling

problem is simplified to O(T).
e Definition: Select N frames from T candidates with the highest importance scores, when evaluated independently. Table 1: Performance of 7, and 7, on Ac-
e The importance score of each frame is defined as c(v,) = max [f.(v,)];

Experimental Validation of 7

e We estimate the relevance between adjacent frames (Figure 1) and conclude that
, with 5 fps being borderline.

e To verify that m, approximates m,, we compare performance (Table 1) and selected frames (Table 2).
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SOSampler

Training Strategy
e SOSampler: A lightweight sampler that learns the semi-optimal policy (7¢) instead of the optimal policy (r,).
e L¢,: Penalizes when the estimated importance score differs from the pretrained classifier's score.

e ;.. Penalizes when the predicted frame class differs from the true label, ensuring each frame reflects the video-level class.
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Figure 1: Distribution of Z(x;,x;) with kernel density estimate.
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Performance Comparison

: SOSampler outperforms other methods on various dataset for both small and
large N, T settings.
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: As N and T increase, OCSamplerl' struggles to optimize effectively, often

performing worse than uniform sampling in large-scale scenarios. SOSampler, in contrast,
maintains high performance even for large N and T values.

[1] Lin, Jintao, et al. "Ocsampler: Compressing videos to one clip with single-step sampling." CVPR. 2022.

: s B M V
By
sﬂ

— 2024

fe Policy | A-Net (mAP) | M-Kin. (Top-1)

T, |87.0% _179.6% _

e | Mo |915%  +45(893% 497

1. |894% +2.4|848%  +52

All |89.0% +2.0|812%  +16

T, |75.3% _ [ 72.5% _

T, |905% +152|838% +11.3

ResNet>O | ' 18749 +12.1|803%  +7.8

All |778% +25|73.6%  +1.1

tivityNet and Mini-Kinetics. Relative im-
provement from 7, is provided on the right.

Dataset

Sampler

Sampling Fidelity (%)

N=1 N=2N=3 N=4 N=5 N=6

A-Net

10.0
10.2
100.0

Random
FrameExit
Tt

20.0
19.3
74.6

30.0
29.3
73.2

40.0
39.3
75.1

50.0
49.6
78.5

60.0
59.3
81.0

M-Kin.

10.0
9.8
100.0

Random
FrameExit
Tt

20.0
22.5
61.5

30.0
32.0
65.2

40.0
42.5
70.6

50.0
51.5
71.8

60.0
62.5
80.5

Table 2: Sampling Fidelity. Note that we re-
port the expected value of the sampling fidelity
for random sampling.

Methods Back- ActivityNet Mini-Kinetics
bones mAP GFLOPs Top-1 GFLOPs
LiteEval [43] 727%  95.1 61.0% 99.0
SCSampler [17] 729% 42.0 T70.8% 41.9
AR-Net [26] 73.8% 335 T1.7%  32.0
videolQ [33] Res- | 74.8% 28.1 723% 204
AdaFocus [41] | Net50 | 75.0% 26.6 729%  38.6
FrameExit [11] 76.1%  26.1  T72.8%  19.7
OCSampler [24] 7712% 258 73.0% 21.6
SOSampler 77.7% 258 73.5% 21.6
Dataset Backbone | Method NIT ] Ada2D [22] Slow | 84.0% 701  79.2% 738
8/30 16760 327100 gcSampler [24]| Only | 87.3% 682  82.6%  27.3
Uniform T71.1% 79.4% 80.4%  SOSampler 50 88.0% 640 83.0% 273
ResNet50 OCSampler | 78.0% 79.1% 80.1% B
. SOSampler |78.7% $0.2% 81.19, ~ rameExit[l1] 86.0% 9.8 - -
ActivityNet _ _ - - OCSampler [24] | X3D-S| 86.6% 7.9 — —
. Uniform 88.5% 89.9% 90.3% SOSampler 87.2 U 76 _ _
TimeSformer | OCSampler | 85.0% 835.3% 84.5%
SOSampler |89.5% 90.1% 90.5%  OCSampler [24]| TimeS-| 83.2%  76.8 80.7%  76.8
o " Fird ;
Uniform 16.9% 48.8% 49.1% SOSampler former | 88.7% 706.8 80.7% 76.8
Mini-Sports 1M SOSampler | 50.0% 51.1% 351.5% d Mini-Kinetics N d7. Th
Uniform 53.9% 355.6% 56.8% an ni-RINEUCs Ior sma an ) ¢
TimeSformer | OCSampler | 48.9% 49.6% 50.0% best peﬁ‘orming model 1s bold-faced.
SOSampler |55.1% 56.9% 57.8% -

Table 5: Experiment on long videos for large N

and 7. The best performing model is bold-faced. 81
Methods Back- | Mini-Sports1M COIN 80
crhods bones | mAP GFLOPs Top-1 GFLOPs
W
LiteEval [43] 44.7% 66.2 - - é 79
SCSampler [17] 44 3% 420  T9.8% 42.0 ©
AR-Net [26] Res- [45.0%  37.6 - - £
AdaFuse [27] | Net50 [44.1%  60.3 : o8
OCSampler [24] 46.7% 258 80.1%  25.8 5
SOSampler 483% 258 80.7%  25.8 o- 77
OCSampler [24] | TimeS- | 45.6% 76.8 81.4% 76.8
SOSampler former [49.1% 76.8 87.7% 76.8 76
Table 4: Comparison on Mini-Sports1M
and COIN Comparison on for small N and 6710

T'. The best performing model 1s bold-faced.
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