

Introduction

Problem statement

- Selecting N frames from T candidates, to avoid redundant computation and to enhance video understanding capability.
- However, exploring all possible combinations of frames requires $O(T^N)$ operations, which is computationally infeasible for large N and T.

Limitations of Previous Research

- Limited to small-scale scenarios
- Most studies have focused on small N and T settings ($N \le 6, T \le 10$).
- Even for these limited cases, exploring the complete search space is still complex.
- Reinforcement Learning (RL) approaches
- Previous works tried to overcome the search space challenge using reinforcement learning (RL), treating the sampler as an agent and the classifier as the environment, optimizing frame selection through rewards.
- Challenge: RL approaches still operate within the same $O(T^N)$ space, limiting their scalability for large-scale video datasets.

Our Solution: Semi-Optimal Policy (π_{s} **)**

- We propose a semi-optimal policy (π_s) that reduces the search space to O(T) by evaluating frames independently.
- This approach allows for scalable frame sampling even for large N and T values.

Our Contributions

- New Sampling Policy: We propose the Semi-Optimal Policy (π_s) , which reduces search space from $O(T^N)$ to O(T) by independently evaluating frames.
- New Sampler: We propose SOSampler, which learns the semioptimal policy (π_s) instead of the optimal policy.
- **Performance:** Our method achieves state-of-the-art performance across multiple datasets and backbone architectures.
- Scalability: Unlike previous methods, our approach demonstrate robust performance gains even with large N and T values.

Scalable Frame Sampling for Video Classification: **A Semi-Optimal Policy Approach with Reduced Search Space**

Junho Lee¹, Jeongwoo Shin¹, Seung Woo Ko^{1,2}, Seongsu Ha^{1,3}, Joonseok Lee^{1,4} ¹Seoul National University ² 🕑 LG Al Research ³ 🌄 Twelve Labs ⁴ Google Research

Sampling Policy

Optimal Policy (π_o)

- Optimal set: The N frames selected by the optimal policy (π_o) is defined as optimal set.
- its $O(T^N)$ complexity makes it computationally infeasible.

Semi-Optimal Policy (π_s)

- problem is simplified to O(T).
- The importance score of each frame is defined as $c(v_t) = \max_{\{i=1,\dots,C\}} [f_c(v_t)]_i$

Experimental Validation of π_s

- assumed up to 1 fps, with 5 fps being borderline.

SOSampler

Training Strategy

- L_{SO} : Penalizes when the estimated importance score differs from the pretrained classifier's score.

Performance Comparison

- Performance: SOSampler outperforms other methods on various dataset for both small and large N, T settings.
- Scalability: As N and T increase, OCSampler^[1] struggles to optimize effectively, often performing worse than uniform sampling in large-scale scenarios. SOSampler, in contrast, maintains high performance even for large N and T values.

[1] Lin, Jintao, et al. "Ocsampler: Compressing videos to one clip with single-step sampling." CVPR. 2022.

• Definition: Select N frames from T candidates that maximize the classifier's confidence on the correct label. • Finding the optimal set and using it as a label to train the model can be the easy way to learn π_o , but

• Frame Independence Assumption: Assessing the importance score of each frame independently, the sampling

• Definition: Select N frames from T candidates with the highest importance scores, when evaluated independently.

• We estimate the relevance between adjacent frames (Figure 1) and conclude that independence can reliably be

• To verify that π_s approximates π_o , we compare performance (Table 1) and selected frames (Table 2).

• SOS ampler: A light weight sampler that learns the semi-optimal policy (π_s) instead of the optimal policy (π_o) .

• L_{LG} : Penalizes when the predicted frame class differs from the true label, ensuring each frame reflects the video-level class.

Dataset	Backbone	Mathal	N / T		
		Method	8/30	16/60	32 / 100
		Uniform	77.1%	79.4%	80.4%
	ResNet50	OCSampler	78.0%	79.1%	80.1%
ActivityNet		SOSampler	78.7%	80.2%	81.1%
reavityree	TimeSformer	Uniform	88.5%	89.9%	90.3%
		OCSampler	85.0%	85.3%	84.5%
		SOSampler	89.5%	90.1%	90.5%
Mini-Sports1M	ResNet50	Uniform	46.9%	48.8%	49.1%
		OCSampler	48.6%	49.6%	50.0%
		SOSampler	50.0%	51.1%	51.5%
	TimeSformer	Uniform	53.9%	55.6%	56.8%
		OCSampler	48.9%	49.6%	50.0%
		SOSampler	55.1%	56.9%	57.8%

Table 5: Experiment on long videos for large N and T. The best performing model is **bold-faced**.

Methods	Back-	Mini-Sports1N			
weulous	bones	mAP	GFLOF		
LiteEval [43]		44.7%	66.2		
SCSampler [17]		44.3%	42.0		
AR-Net [26]	Res-	45.0%	37.6		
AdaFuse [27]	Net50	44.1%	60.3		
OCSampler [24]		46.7%	25.8		
SOSampler		48.3%	25.8		
OCSampler [24]	TimeS-	45.6%	76.8		
SOSampler	former	49.1%	76.8		

Table 4: Comparison on Mini-Sports1M and COIN Comparison on for small N and T. The best performing model is **bold-faced**.

BN		
	20	J Z 4

f_c	Policy	A-Net	(mAP)	M-Kin.	(Top-1)
		87.0%		79.6%	<u> </u>
TimeSformer	π_{o}	91.5%	+4.5	89.3%	+9.7
	π_s	89.4%	+2.4	84.8%	+5.2
	All	89.0%	+2.0	81.2%	+1.6
ResNet50	π_u	75.3%	_	72.5%	_
	π_o	90.5%	+15.2	83.8%	+11.3
	π_s	87.4%	+12.1	80.3%	+7.8
	All	77.8%	+2.5	73.6%	+1.1

Table 1: Performance of π_o and π_s on ActivityNet and Mini-Kinetics. Relative improvement from π_u is provided on the right.

Detect	Samplar	Sampling Fidelity (%)						
Dalasel	Sampler	N = 1	N = 2	N = 3	N = 4	N = 5	N = 6	
	Random	10.0	20.0	30.0	40.0	50.0	60.0	
A-Net	FrameExit	10.2	19.3	29.3	39.3	49.6	59.3	
	π_s	100.0	74.6	73.2	75.1	78.5	81.0	
	Random	10.0	20.0	30.0	40.0	50.0	60.0	
M-Kin.	FrameExit	9.8	22.5	32.0	42.5	51.5	62.5	
	π_s	100.0	61.5	65.2	70.6	71.8	80.5	

Table 2: Sampling Fidelity. Note that we report the expected value of the sampling fidelity for random sampling.

	· · · · ·						
	Methods	lethods Back- ActivityNe		vityNet	Mini-Kinetics		
	methods	bones	mAP	GFLOPs	Top-1	GFLOPs	
	LiteEval [43]		72.7%	95.1	61.0%	99.0	
	SCSampler [17]		72.9%	42.0	70.8%	41.9	
	AR-Net [26]		73.8%	33.5	71.7%	32.0	
	videoIQ [33]	Res-	74.8%	28.1	72.3%	20.4	
	AdaFocus [41]	Net50	75.0%	26.6	72.9%	38.6	
	FrameExit [11]		76.1%	26.1	72.8%	19.7	
	OCSampler [24]		77.2%	25.8	73.0%	21.6	
_	SOSampler		77.7%	25.8	73.5%	21.6	
	Ada2D [22]	Slow	84.0%	701	79.2%	738	
)	OCSampler [24]	Only	87.3%	68.2	82.6%	27.3	
	SOSampler	50	88.0%	64.0	83.0%	27.3	
	FrameExit [11]		86.0%	9.8	_	_	
_	OCSampler [24]	X3D-S	86.6%	7.9	_	_	
	SOSampler		87.2%	7.6	-	-	
	OCSampler [24]	TimeS-	83.2%	76.8	80.7%	76.8	
_	SOSampler	former	88.7%	76.8	80.7%	76.8	

Table 3: Comparison on ActivityNet-v1.3 and Mini-Kinetics for small N and T. The best performing model is **bold-faced**.

