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Abstract

Given a video with T frames, frame sampling is a task to select N ≪ T frames, so
as to maximize the performance of a fixed video classifier. Not just brute-force search,
but most existing methods suffer from its vast search space of

(T
N
)
, especially when N

gets large. To address this challenge, we introduce a novel perspective of reducing the
search space from O(T N) to O(T ). Instead of exploring the entire O(T N) space, our
proposed semi-optimal policy selects the top N frames based on the independently esti-
mated value of each frame using per-frame confidence, significantly reducing the compu-
tational complexity. We verify that our semi-optimal policy can efficiently approximate
the optimal policy, particularly under practical settings. Additionally, through extensive
experiments on various datasets and model architectures, we demonstrate that learning
our semi-optimal policy ensures stable and high performance regardless of the size of N
and T .

1 Introduction
As video platforms continue to grow explosively, efficient and scalable video understand-

ing becomes increasingly important. With remarkable advances in deep learning, action
recognition and video understanding have also made tremendous progress, from 2D [7, 9,
18, 20, 32, 45, 46] and 3D CNN models [3, 8, 29, 35, 36, 37] to Transformers [1, 2, 25].
Despite these advances, video understanding models are still often overwhelmed by high
storage and computational cost. To mitigate this, lighter models with less parameters and
computational cost [5, 6, 16, 28, 39, 47] have been proposed.
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Focusing mostly on the modeling aspect, however, these works have not touched the
most basic underlying condition that digital videos are encoded as a temporal sequence of
regularly sampled frames, where each frame is a 2D spatial matrix of regularly sampled
pixels, regardless of the content. These regularly sampled pixels are often highly redundant,
especially when the frame rate is high. Ideally, it will be more efficient to sample frames
proportional to the amount of information, removing redundancy among them as much as
possible. Given that most existing video models are still built on a constant frame sampling
rate for all videos, there are further room for improvement in terms of efficiency.

In this paper, we consider the frame sampling problem. For a video with T frames, we
propose a frame sampler that selects N ≪ T frames, which are then used by a video model
pre-trained for a specific downstream task (e.g., classification). The goal of this task is to
train a sampler that finds the best combination of N frames out of the given T frames, letting
the pre-trained model (classifier) to achieve the highest downstream task performance.

To achieve this, the sampler learns a policy to select N frames out of T candidates. The
ideal policy would select the best N frames that lead to the highest downstream task per-
formance, and we call this optimal policy (πo). A naive approach would collect the best
combinations as training data and train the sampler in a supervised manner. However, find-
ing the best combination is an NP-hard combinatorial optimization problem, as it requires
comparing all

(T
N

)
possible combinations to find the solution. Exhaustively searching this

O(T N) space is practically infeasible when N and T grow.
Several previous works [22, 24, 41, 42, 44] have applied reinforcement learning to search

this space, setting up the sampler as an agent and the classifier as the environment and train-
ing the sampler with a reward function designed to find πo. While they have shown promis-
ing results for small N and T , the underlying search space of O(T N) still remains the same,
posing challenges for large N and T .

Considering the purpose of the frame sampling task, however, it is more important for
the sampler to operate effectively on a long video with a large N and T . Unlike the previous
works that operate directly within the O(T N) space, we take a step back to find a way to
reduce this search space itself. The fundamental reason for this exponential growth of search
space is that the value of a selected frame depends on those of other selected frames and thus
we need to consider the joint distribution of the frame values.

What if, however, the value of a frame can be fairly determined independently from
each other? We would be able to score T frames independently and simply to take the
top N frames. In this paper, we argue that, based on experimental results, frames can be
reasonably assessed independently under most practical conditions where frame sampling is
relevant—namely, when the video is not excessively short and the frame rate is not extremely
high. We observe that a policy based on evaluating the value of each frame can reasonably
approximate an optimal sampling policy.

Based on this observation, we propose a semi-optimal policy (πs) that selects the top N
frames based on estimated value of each frame using per-frame confidence. This approach
significantly reduces the search space to O(T ). We empirically show on multiple datasets
that πs is a policy that reasonably approximates πo, and demonstrate that the state-of-the-art
sampler [24] achieves more stable and superior performance when it learns πs instead of πo,
not only with small but also large N and T .

Our contributions are summarized as follows:

• We introduce a novel perspective of reducing the search space from O(T N) to O(T ) in
frame sampling for video classification, proposing the semi-optimal policy.
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• Through various analyses, we demonstrate that the semi-optimal policy approximates
the optimal policy under the most practical settings.

• From extensive experiments, we show that a sampler learning the semi-optimal policy
achieves stable and high performance across both small and large values of N and T .

2 Related Work
Video Recognition. 2D and 3D convolutional neural networks (CNNs) have been widely
used for image and video classification. 2D-CNN encodes each frame individually, then ag-
gregates the temporal dynamics by feature pooling [13, 21, 45], rank pooling [9], or relation
network [46]. Two-stream methods take both spatial stream from CNN and temporal stream
from optical flow as input at various levels of fusion [7, 32]. 3D-CNN approaches apply
convolution operations on both spatial and temporal dimensions simultaneously, pioneered
by C3D [35]. I3D [3] combines the 3D convolution with two-stream approaches. P3D [29]
and R(2+1)D [36] factorizes the spatial and temporal dimensions in the 3D convolution.
SlowFast [8] model consists of two different pathways of focusing more on temporal and
spatial information, respectively. CSN [37] shows that separating the channel interaction
with spatio-temporal interaction leads to lower computational cost and better regularization.

Recently, Transformers [38] have been applied to video classification and action recog-
nition. Due to the high computational cost for processing all patches in the video, most video
Transformer models factorize spatial and temporal attentions [1, 2] or utilize the inductive
bias of locality in videos [25] for efficient handling of videos.

Efficient Video Recognition. One of the biggest challenges of video classification is the
computational cost stemming from the vast number of frames. One remedy is to lighten the
model architecture itself [5, 6, 16, 28, 39, 47]. Another direction is algorithmic improve-
ment for better efficiency. AdaFrame [44] learns from both the current frame and the global
context to make decisions on where to look next in the video. AdaFocus series [40, 41] use
a lightweight global CNN to guide the policy network to extract the most useful image crop
to classify the video. On-the-fly gating techniques are introduced to reduce computation by
only extracting finer features at selected frames [43], determining an early exiting point [11],
or deciding which frames in the video to fully process [31]. ListenToLook [10] utilizes only
a single frame and audio stream to determine the full video descriptor for the clip.

An alternative is to sample frames to process, instead of feeding all of them to the clas-
sification model, vastly reducing the computational cost. ARNet [26] and VideoIQ [33] pre-
train multiple classifiers and train a sampler to determine which classifier to process each
frame. MARL [42] utilizes multiple agents that adjust the sampling location based on local
and historical context. OCSampler [24] simply selects the salient frames, while Ada2D [22]
determines which frames will be used in 2D or 3D. Ours falls into this category, particularly
aiming to effectively sample N frames for a large T .

3 Problem Formulation
Sampling Scenario. We assume an offline environment, where we are given T candidate
frames v ∈ RT×3×H×W from a video, with H and W indicating the height and width of the
frames, respectively. A frozen pretrained classifier fc : RN×3×H×W → [0,1]C is given, where
N is the number of input frames and C is the number of classes. In this context, our final



4 LEE ET AL.: SCALABLE FRAME SAMPLING FOR VIDEO CLASSIFICATION

objective is to train a sampler that finds the optimal N frames out of the given T frames that
make the classifier to best perform on the downstream task.

Optimal Policy πo. Given T candidate frames, the optimal policy πo chooses N frames that
maximize the confidence of the classifier fc on the true label y ∈ [1, ...,C], among all possible
combinations of the candidate frames. We define the frames selected by πo as optimal set.

Challenges. The most straightforward approach to learn πo would be to train a sampler in a
supervised manner to select the optimal set of frames. However, finding the optimal set of
frames is computationally prohibitive, requiring to explore a search space of O(T N). Even
for moderately large N and T , the search space quickly grows, making it challenging to train
the sampler directly.

To explore this space, previous works adopt reinforcement learning, where a network
sampler (agent) is trained based on rewards given by the classifier (environment) for the se-
lected frames (action) according to the policy. Although these approaches have been effective
for small N and T , they are not scalable for growing N and T . To mitigate the exponential
time complexity caused by this exponentially growing search space, we propose an effective
approach in most practical settings.

4 Method

4.1 Semi-Optimal Policy

The main challenge of the frame sampling problem lies in the fact that the importance of
a frame is influenced by other selected frames, necessitating to explore the interactions in the
exponentially growing search space to N and T . Conversely, we recognize that the problem
would be much simpler if: 1) the importance of each frame were (roughly) independent from
other frames, and 2) we could reasonably approximate the importance of each frame. This
would allow us to score T frames individually and select the top N of them.

In this section, we show that the frames are indeed close to independence when it comes
to a practical setting of the frame sampling task – where the video is not trivially short and
the frame rate is relatively low. The opposite case, a short snippet with high frame rate,
would not need a sophisticated frame sampling method anyway, since most frames would be
highly redundant. From this observation, we introduce a new sampling policy that effectively
approximates the optimal policy while significantly reducing the space complexity.

Independence between Frames. We claim that frames influence each other’s importance
mainly due to the overlapping information between them. That is, even if a frame contains
important information, its importance will be diminished if the same information is redun-
dantly provided by others. Conversely, the importance of a frame increases if it contains
accurate and unique information; in other words, if it provides distinct information that is
not covered by other frames. Thus, if a candidate frame is sufficiently dissimilar from oth-
ers, we would be able to independently score it without concerning redundancy.

To check applicability of this idea, we measure the similarity between adjacent frames
at various frame rates. The similarity can be computed in several resolutions; as coarse as
the probability distribution over the class labels, or as fine-grained as the pixel-level. Both
extremes are less ideal, since they do not convey high-level semantics of each frame. Thus,
we estimate the relevance between two sampled frames i and j by applying a Gaussian
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Figure 1: Distribution of I(xi,x j) with kernel density estimate.

9

Figure 2: Illustration of the Semi-Optimal
Policy πs. We briefly illustrate how πs
works on two different architecture. The
numbers in the pink and blue boxes rep-
resent the frame indices sampled with
ResNet50 and TimeSformer as the back-
bone, respectively, when N = 6.

smoothing kernel to their visual embeddings, denoted by xi and x j:

I(xi,x j) =
1
Z

e{−
1
2 (xi−x j)

⊤Σ−1(xi−x j)}, (1)

where Σ determines the kernel bandwidth and Z = 1/|
√

2πΣ| is the normalizer.
Fig. 1 illustrates the estimated relevance between two consecutive frames at various

frame rates on ActivityNet-v1.3, using ResNet50 and TimeSformer features. We observe
with both features that higher frame rates lead to higher redundancy between frames. Al-
though this tendency is expected considering the nature of videos, what we need to focus is
where is the proper frame rate threshold that we can safely assume independence between
frames. From the plots, we conclude that we can reliably assume independence up to 1 fps,
while 5 fps is on the borderline. Under a practical setting for frame sampling, we claim that
1 fps is still reasonable, since higher frame rates would be prohibitively expensive for long
videos; e.g., for a 5-min-long video, 5 fps already piles up 1,500 candidate frames. In short,
we can reasonably assume independence among frames when the target video is not trivially
short, since we would only feed regularly sampled frames at lower frame rate due to the
computational overhead.
Semi-optimal Policy πs. Under the frame independence condition, we score the importance
of each frame independently. Specifically, we infer the frame-level confidence scores for all
C classes by treating each frame vt ∈RH×W×3 as a single-frame video clip vt ∈R1×H×W×3

and take its confidence scores fc(vt) ∈ [0,1]C. We illustrate the mechanism of πs in Fig. 2.
In order to score the importance of a frame, its confidence scores fc(vt) on C classes

need be aggregated into a single confidence score c(vt) ∈ R. There are two options for
this. First, we may take the confidence for the true label y as importance score. That is,
c(vt) = [ fc(vt)]y, where [ fc(vt)]y indicates the confidence of frame vt for the label y using
the classifier fc. This approach aims to learn the desired importance score for the actual
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fc Policy A-Net (mAP) M-Kin. (Top-1)

TimeSformer

πu 87.0% – 79.6% –
πo 91.5% +4.5 89.3% +9.7
πs 89.4% +2.4 84.8% +5.2
All 89.0% +2.0 81.2% +1.6

ResNet50

πu 75.3% – 72.5% –
πo 90.5% +15.2 83.8% +11.3
πs 87.4% +12.1 80.3% +7.8
All 77.8% +2.5 73.6% +1.1

Table 1: Performance of πo and πs on Ac-
tivityNet and Mini-Kinetics. Relative im-
provement from πu is provided on the right.

Dataset Sampler Sampling Fidelity (%)
N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

A-Net
Random 10.0 20.0 30.0 40.0 50.0 60.0

FrameExit 10.2 19.3 29.3 39.3 49.6 59.3
πs 100.0 74.6 73.2 75.1 78.5 81.0

M-Kin.
Random 10.0 20.0 30.0 40.0 50.0 60.0

FrameExit 9.8 22.5 32.0 42.5 51.5 62.5
πs 100.0 61.5 65.2 70.6 71.8 80.5

Table 2: Sampling Fidelity. Note that we re-
port the expected value of the sampling fidelity
for random sampling.

class. The second option takes the maximal confidence across all classes i = 1, ...,C; that is,
c(vt) = maxi=1,...,C [ fc(vt)]i. Motivation of this approach is to train the sampler with more
consistent scores, since the importance may significantly vary depending on the labels even
for similar scenes. Once we have the frame-wise confidence distribution c(vt) for t = 1, ...,T ,
we select the top N frames with highest importance score. That is,

πs(v,y;N) = top-N
t=1,...,T

c(vt). (2)

Empirical Verification. We verify that our proposed policy πs reasonably approximates the
optimal policy πo in practice. First, we actually compare the frame sampling performance of
πs against πo with two architectures, a CNN and a transformer, on two datasets, ActivityNet-
v1.3 [4] and Mini-Kinetics [15], representing the untrimmed and trimmed video datasets,
respectively. Tab. 1 compares the performance of a pre-trained classifier when it takes a
set of N = 6 frames selected from T = 10 frames by various sampling policies: uniform
sampling (πu), the optimal policy (πo), our semi-optimal policy (πs), and using all frames
without sampling (All). The results indicate that πs demonstrates significant improvement
over πu and ‘All’ under all settings, most closely approximating the optimal policy, πo.

Additionally, we report the sampling fidelity, which indicates the similarity of the sam-
pled set to the optimal set, across various values of N. Formally, sampling fidelity is defined
as Ev (|St(v)∩So(v)|/N), where St(v) and So(v) denote the sampled set of frames from
the video v by the target policy (πt ) and πo, respectively. Tab. 2 compares sampling fidelity
of our πs against two baselines: the random sampling and a deterministic coarse-to-fine sam-
pling policy proposed in FrameExit [11]. We observe that our πs demonstrates significantly
higher sampling fidelity than the FrameExit policy, which exhibits fidelity nearly identical to
the random policy. We also provide a qualitative comparison in Appendix C.1–C.2.

4.2 SOSampler: Semi-optimal Policy-based Sampler
As shown in Sec. 4.1, our semi-optimal policy πs reasonably approximates the optimal

policy πo. To train a lightweight network sampler based on this policy, we propose the Semi-
Optimal Sampler (SOSampler), which learns πs instead of πo in a straightforward manner.
Overview. Fig. 3 illustrates an overview of our approach, which consists of a frame sampler
SSO and an action classifier fc. At training, we first take T candidate frames from the input
video and compose a video clip v. The classifier fc takes each candidate frame as a single-
frame clip input and conducts classification. This process is performed individually for each
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Figure 3: SOSampler Algorithm. SOSampler consists of a sampler SSO and a classifier fc,
which can be any model architecture.

frame, producing T predictions in total. From these T predictions, we take the representative
confidence c(vt) either by taking the true label y or by taking the maximal one, as explained
in Sec. 4.1. We then apply softmax to get a normalized importance distribution ps ∈ RT .
Then, our sampler SSO takes the spatially down-sampled version of the same T candidate
frames. SSO predicts the importance scores p̂s ∈RT over them and classifies each frame into
the C classes using linear projections. See Appendix A.1 for more detailed description.

Training Objectives. We train the sampler SSO with two objectives: 1) the semi-optimal
policy loss LSO, penalizing when the estimated importance score p̂s does not agree with
the confidence ps produced by fc, and 2) the label guidance loss LLG, penalizing when the
predicted class of each frame differs from the true label to ensure that each frame contains
information about the video-level class.

For LSO, we initially experimented with mean square loss, ∥p̂s −ps∥2, but the result was
not satisfactory. Taking inspiration that what we need is a correct ordering of the importance
scores, not their exact values, we adopt a pairwise ranking loss [19] for LSO, which penalizes
the model when the relative order of importance between a pair of two frames is reversed:

LSO = ∑
(pi,p j)∈Ψ

sign(pi − p j) ·max(γ + p̂i − p̂ j,0), (3)

where Ψ = {(pi, p j); pi > p j}, sign(z) is the sign function, and γ is a hyperparameter indi-
cating a target margin. For LLG, we use the cross-entropy loss.

The overall loss function is constructed by

L= λ ·LSO(ps, p̂s)+(1−λ ) ·LLG(ŷs,y), (4)

where λ is a hyperparameter that adjusts the ratio of the two losses, ŷs denotes the predicted
confidence scores by the sampler and y is the one-hot encoding of the true label y.

Inference. At inference, T candidate frames are uniformly sampled from the target video.
As in training, each frame is down-sampled and fed into the sampler SSO to obtain the im-
portance scores. Frames with the top N scores are selected, and those selected frames in the
original resolution are fed into fc to perform the final classification.
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Methods Back- ActivityNet Mini-Kinetics
bones mAP GFLOPs Top-1 GFLOPs

LiteEval [43] 72.7% 95.1 61.0% 99.0
SCSampler [17] 72.9% 42.0 70.8% 41.9
AR-Net [26] 73.8% 33.5 71.7% 32.0
videoIQ [33] Res- 74.8% 28.1 72.3% 20.4
AdaFocus [41] Net50 75.0% 26.6 72.9% 38.6
FrameExit [11] 76.1% 26.1 72.8% 19.7
OCSampler [24] 77.2% 25.8 73.0% 21.6
SOSampler 77.7% 25.8 73.5% 21.6

Ada2D [22] Slow 84.0% 701 79.2% 738
OCSampler [24] Only 87.3% 68.2 82.6% 27.3
SOSampler 50 88.0% 64.0 83.0% 27.3

FrameExit [11]
X3D-S

86.0% 9.8 – –
OCSampler [24] 86.6% 7.9 – –
SOSampler 87.2% 7.6 – –

OCSampler [24] TimeS- 83.2% 76.8 80.7% 76.8
SOSampler former 88.7% 76.8 80.7% 76.8

Table 3: Comparison on ActivityNet-v1.3
and Mini-Kinetics for small N and T . The
best performing model is bold-faced.

Methods Back- Mini-Sports1M COIN
bones mAP GFLOPs Top-1 GFLOPs

LiteEval [43] 44.7% 66.2 - -
SCSampler [17] 44.3% 42.0 79.8% 42.0
AR-Net [26] Res- 45.0% 37.6 - -
AdaFuse [27] Net50 44.1% 60.3 - -
OCSampler [24] 46.7% 25.8 80.1% 25.8
SOSampler 48.3% 25.8 80.7% 25.8

OCSampler [24] TimeS- 45.6% 76.8 81.4% 76.8
SOSampler former 49.1% 76.8 87.7% 76.8

Table 4: Comparison on Mini-Sports1M
and COIN Comparison on for small N and
T . The best performing model is bold-faced.

5 Experiment

5.1 Experimental Setup

Datasets. We evaluate on four public video classification benchmarks: ActivityNet-v1.3 [4],
Mini-Kinetics [15], Mini-Sports1M [14], and COIN [34]. See Appendix A.2 for more de-
tailed description about the datasets.

Experimental Protocol. We randomly sample T frames from each video as a training exam-
ple and uniformly sample T frames from each test video. We use MobileNetv2TSM [23, 30]
as the feature extractor of our sampler SSO and one additional fully-connected layer at the
head of the sampler, following [24]. See Appendix A.3 for more details.

Evaluation Metrics. Following the common practice, we measure the mean average pre-
cision (mAP), the mean of class average precisions, for ActivityNet, Mini-Sport1M, and
COIN datasets. For Mini-Kinetics, we use top-1 accuracy, which is the ratio of the correctly
classified test samples. For computational cost, we report GFLOPs for all datasets.

5.2 Results and Analysis

Comparison with Small N and T . To compare with existing methods under the same
conditions,1 we first evaluate with the common setting of T = 10 and N = 6 (except for
Mini-Kinetics with ResNet50, where N = 5).

As seen in Tab. 3–4, our approach consistently outperforms previous methods across all
four datasets and backbone architectures, highlighting the effectiveness of learning πs even
when the search space is not very large. Nevertheless, comparing Tab. 3 to Tab. 1, we observe
that SOSampler still does not fully emulate πs, possibly due to the loss when it transfers the
label information. A future work may further address this issue to fill the gap.

1Results for OCSampler with ResNet50 in Tab. 3 is our reproduction using pre-trained weights and settings
provided by the original author. They slightly lag behind on Mini-Kinetics, by 0.7%.
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Dataset Backbone Method N / T
8 / 30 16 / 60 32 / 100

ActivityNet

ResNet50
Uniform 77.1% 79.4% 80.4%
OCSampler 78.0% 79.1% 80.1%
SOSampler 78.7% 80.2% 81.1%

TimeSformer
Uniform 88.5% 89.9% 90.3%
OCSampler 85.0% 85.3% 84.5%
SOSampler 89.5% 90.1% 90.5%

Mini-Sports1M

ResNet50
Uniform 46.9% 48.8% 49.1%
OCSampler 48.6% 49.6% 50.0%
SOSampler 50.0% 51.1% 51.5%

TimeSformer
Uniform 53.9% 55.6% 56.8%
OCSampler 48.9% 49.6% 50.0%
SOSampler 55.1% 56.9% 57.8%

Table 5: Experiment on long videos for large N
and T . The best performing model is bold-faced.

Figure 4: Performance by sampler
across N/T on ActivityNet-v1.3.

Comparison with Large N and T . We conduct experiments on large N and T to verify the
effect of reduced search space by our proposed policy πs, comparing with OCSampler [24]
and uniform sampling as baselines. Note that OCSampler and SOSampler have exactly the
same architecture – the only difference lies in the learning objective. We evaluate on the
ActivityNet-v1.3 and Mini-Sports1M datasets, which consist of sufficiently long videos2, to
ensure the frame independence even for a large T .

As shown in Tab. 5, our approach consistently achieves competitive performance regard-
less of the backbone architectures and with various values of N and T . With the OCSampler,
on the other hand, the performance improvement is inconsistent and it sometimes under-
performs even than the uniform sampling. This is illustrated in Fig. 4 as well; the perfor-
mance of OCSampler lags behind the uniform sampling from N = 16,T = 60 and beyond,
indicating that directly searching the O(T N) space is not scalable for large N and T . Our
semi-optimal policy does not suffer from this, recalling that our approach adopts the same
architecture as OCSampler. Additionally, we observe that OCSampler does not perform well
with the TimeSformer backbone. We also attribute this to the more complex search space of
transformer-based classifiers compared to CNN-based ones. Based on the results, we con-
clude that our approach to reduce the complexity of search space is indeed effective for large
N and T , which has been challenging for existing methods.

Qualitative Analysis. In Appendix C.1–C.2, we illustrate success and failure cases of our
SOSampler, comparing with sampling policies of πo and πs.

5.3 Ablation Study
Loss function. Tab. 6 reports the result of an ablation study on the loss functions, conducted
on ActivityNet-v1.3. ‘MSE’ and ‘Ranking’ indicate the two choices for LSO presented in
Sec. 4.2, while ‘Label’ and ‘Max’ indicate how we obtain the importance score of each
frame c(vt) from the confidence distribution fc(vt) over all classes.

As we mentioned earlier, the ranking loss in Eq. (3) outperforms the MSE loss for LSO.
We also observe that the max-aggregation leads to stronger performance than the label con-
fidence, probably because it learns consistent scores across features. The label guidance loss

2Results for short videos are discussed in Appendix B.1.
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LSO LLG mAP (%)MSE Ranking Label Max

✓ ✓ 87.38
✓ ✓ ✓ 87.51

✓ ✓ 88.21
✓ ✓ ✓ 88.40
✓ ✓ ✓ 88.65

Table 6: Ablation study on losses.

T 10 6 10 16 24

N 2 4 6 8 6

mAP 71.1% 76.2% 77.7% 77.9% 75.3% 77.7% 78.2% 78.4%
GFLOPs 9.3 17.6 25.8 34.1 24.7 25.8 26.4 27.2

Table 7: Ablation study on T and N.

LLG turns out to slightly improve the overall performance.

Exploration on N and T . We fix N = 6 and T = 10 in Tab. 3–4 mainly for the pur-
pose of comparison with previous models. We further explore various combinations of
N ∈ {2,4,6,8} and T ∈ {6,10,16,24} to better understand our method. As seen in Tab. 7,
performance consistently improves with a larger N, but the gain diminishes beyond N ≥ 6.
Also in the case of N = 6, we observe consistently improved performance with larger T .

6 Conclusion
In this paper, we address the scalability challenge of the frame sampling task, propos-

ing our novel novel semi-optimal policy πs to dramatically reduce the search space itself
from O(T N) to O(T ), supported by empirical evidence of frame independence. Through
extensive experiments, we demonstrate that πs effectively approximates the optimal policy.
Furthermore, across all datasets and architectures, the sampler which learns πs instead of πo
outperforms existing methods both for small and large N and T . These results suggest that
our new approach, which changes the search space itself rather than the exploration method,
is more effective than previous approaches. However, the frame independence assumption
we propose does not hold in all scenarios, and there remains potential for further perfor-
mance improvements in the sampler learning our proposed πs. Addressing these limitations
will be an important direction for future work.
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