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1 Implementation Details

For visual odometry, we randomly sample 128 patches per frame. The initialization pro-
cess utilizes the first 8 key frames, while the local optimization window is set to 15 frames.
The most recent 3 frames are consistently used as keyframes, with the fourth-to-last keyframe
being marginalized if the optical flow magnitude between the fifth-to-last keyframe and the
third-to-last keyframe is less than 15 pixels.

In the context of 3D Gaussian mapping, the learning rate for the Gaussian center starts
at le-4 and gradually decreases to le-6. The learning rates for opacity, scale, rotation, and
features are set to 0.05, 0.001, 0.001, and 0.0025, respectively. For each scene in the Replica
dataset [5], we perform a total of 10,000 optimization iterations. Densification begins after
500 iterations and continues until 9,000 iterations, occurring every 200 iterations. Follow-
ing the 3D Gaussian Splatting methodology [2], opacity is reset every 3,000 iterations. The
threshold 7 for dynamic 3D Gaussian insertion is defined as the 25th percentile of the mean
distances to each point’s three nearest neighbors. In clarity-enhancing Gaussian densifica-
tion, the split threshold is set at 0.00025 of the total image area.

2 Comparison with Baselines

We selected Point-SLAM [4], SplaTAM [1], and MonoGS [3] as our baselines. Using
their open-source code, we reproduced PointSLAM [4], SplaTAM [1], and MonoGS [3],
ensuring consistent hardware settings with our method. The results are presented in Table 1
and Table 2 of the main paper. Below, we outline the key differences between our approach
and these existing methods.

Point-SLAM [4] diverges from previous dense neural SLAM methods that depend on
feature grids (dense grid or hash grid). Instead, it decodes colors and occupancies from point
clouds back-projected from input depth maps. In contrast, our approach is a 3D Gaussian
Splatting (GS)-based method that does not utilize depth information.

Both SplaTAM [1] and MonoGS [3] are also 3D GS-based methods. However, they
differ from our approach as they jointly optimize the camera poses and 3D Gaussians by
minimizing rendering loss. Our method, on the other hand, employs a patch-based visual
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odometry to estimate camera poses, which enhances efficiency and accuracy. Furthermore,
SplaTAM [1] relies on depth sensors to initialize 3D Gaussians. Although MonoGS [3] can
operate with monocular RGB input, our experiments demonstrate that our method surpasses
it in both camera tracking accuracy and rendering quality. MonoGS lacks robustness across
different modes, while our method maintains high performance and achieves consistent re-
sults with both monocular RGB and RGB-D inputs.

3 More Results

3.1 More ablation studies

In addition to the ablation studies presented in the main text, we conducted additional
experiments to demonstrate the effectiveness of our proposed modules.

Effectiveness of Planar Regularization. We present the loss curves for variations with
and without planar regularization term in Figure I, running on Replica/room0. The loss
values for the configurations incorporating planar regularization are consistently lower than
those without, indicating that the planar regularization term enhances the convergence of the
optimization process.

—— w/ planar regularization
—— w/o planar regularization

0 2000 4000 6000 8000
Iterations

Figure 1: Loss curve of our method with and without planar regularization.

Effectiveness of Clarity-Enhancing Densification. As shown in Figure 2, we present a
visual comparison of results with and without the Clarity-Enhancing Densification module.
Without this module, the rendered image lacks detail and appears blurry, as highlighted by
the blue and green rectangles. For a more detailed examination, please zoom in on the
highlighted areas.

w/o Clarity-Enhancing Densification w/ Clarity-Enhancing Densification GT

Figure 2: Visual comparison results of with and without Clarity-Enhancing Densification.
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3.2 Memory Analysis

We report the peak values of GPU memory consumption in Table 1, comparing our
method with the baselines SplaTAM [1] and MonoGS [3] when running on Replica/room0.
SplaTAM and MonoGS require 11.34 GB and 14.96 GB of GPU memory, respectively,
whereas our method consumes only 7.91 GB. This significantly lower GPU memory con-
sumption demonstrates the memory efficiency of our approach compared to the baselines.

Method SplaTAM [1] MonoGS [3] Ours
GPU Memory (MB) 11611 15315 8104
Table 1: GPU memory consumption comparison. We compare GPU memory consumption
with baselines SplaTAM [1] and MonoGS [3] on Replica/room0.

3.3 Extended experiments using RGB-D as input

Our method is well compatible with scenarios using RGB-D as input and achieves better
accuracy compared to using RGB input.

Method. Implementing a version of our method that utilizes RGB-D input is straightfor-
ward. Firstly, for the visual odometry component, we initialize the inverse depths of patches
using the input depths instead of random sampling. Secondly, in the 3D Gaussian map-
ping process, in addition to incorporating new 3D Gaussians derived from patches optimized
by visual odometry, we also add new 3D Gaussians from randomly downsampled points
back-projected from input depth images every 50 frames. Furthermore, we introduce depth
supervision for the optimization of the 3D Gaussian map, specifically by minimizing the
difference between the rendered depth images and the input depth images, for the i-th frame,
the depth loss term is defined as:

Leprn = ||1Di — Dil1, (D
and the final objective function is changed to:
L= 2'c()lor . Ecolor + Areg : ‘Creg + Adeplh . Edeptln (2)

where the Agepr, is the weight of Lgepi.

Experimental results. As shown in Table 2, we conducted experiments using both monoc-
ular RGB and RGB-D inputs on the Replica [5] and TUM-RGBD [6] datasets, each with
three sequences. The numerical results reveal that MonoGS [3] performs better in RGB-D
mode than in monocular RGB mode on the Replica dataset but performs worse on the TUM-
RGBD dataset. This indicates a lack of robustness in MonoGS across different modes. In
contrast, our method demonstrates greater robustness, achieving comparable results in both
monocular RGB and RGB-D modes. Additionally, when using RGB-D as input, our method
outperforms MonoGS in both rendering quality and tracking accuracy.

3.4 More Visualization Results

We show more visualization results in Figure 3 and Figure 4.
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Method  Modality Metric room2 office2 office4 frl/desk2 fr2/xyz fr3/office
MonoGS RGB PSNR[dB]T 31.82  27.01  27.29 14.06 22.06 23.02
SSIM?T 0.92 0.88 0.90 0.50 0.72 0.78
LPIPS| 0.16 0.26 0.25 0.62 0.27 0.32
ATE-MSE (cm)]  6.53 20.89  43.85 79.45 4.31 1.85
MonoGS  RGB-D PSNR[dB]T 3749 3624  37.06 8.90 12.46 15.95
SSIM?T 0.96 0.96 0.95 0.31 0.71 0.46
LPIPS| 0.075  0.078  0.099 0.71 0.30 0.74
ATE-MSE (cm)]  0.31 0.31 3.2 90.92 1.47 104.88
Ours RGB PSNR[dB]1 37.01 3611  37.28 20.64 26.52 25.08
SSIM1 0.96 0.95 0.96 0.77 0.86 0.85
LPIPS| 0.077  0.090 0.086 0.29 0.13 0.18
ATE-MSE (cm)]  0.22 0.42 042 5.18 0.38 0.36
Ours RGB-D PSNR[dB]T 38.25 3643 38.11 21.70 27.08 25.79
SSIM?T 0.97 0.96 0.96 0.79 0.87 0.86
LPIPS| 0.075  0.081  0.084 0.252 0.113 0.169

ATE-MSE (cm))  0.19 0.32 0.40 4.66 042 0.31
Table 2: Comparison with MonoGS [3]. We conduct experiments both taking monocular
RGB and RGB-D as input on Replica [5] and TUM-RGBD [6] datasets, each consisting of
3 sequences. The best results are shown in bold, and the second best results are underlined.

4 Limitations and Future Works

While our method has demonstrated significant effectiveness, several limitations need to
be addressed to improve its applicability in more challenging environments. Currently, the
approach may struggle with scenes that involve significant motion blur or dynamic objects.
Future research will focus on enhancing the robustness and adaptability of our method to
better handle these complex scenarios. Additionally, to develop a more practical and com-
prehensive SLAM system, future work will focus on integrating loop closing, map reusing,
and re-localization capabilities.
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Figure 3: Rendering samples on Replica dataset.
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Figure 4: Rendering samples on Replica dataset.
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