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Abstract

Multi-modal crowd counting is a crucial task that uses multi-modal cues to estimate
the number of people in crowded scenes. To overcome the gap between different modali-
ties, we propose a modal emulation-based two-pass multi-modal crowd-counting frame-
work that enables efficient modal emulation, alignment, and fusion. The framework
consists of two key components: a multi-modal inference pass and a cross-modal emu-
lation pass. The former utilizes a hybrid cross-modal attention module to extract global
and local information and achieve efficient multi-modal fusion. The latter uses atten-
tion prompting to coordinate different modalities and enhance multi-modal alignment.
We also introduce a modality alignment module that uses an efficient modal consistency
loss to align the outputs of the two passes and bridge the semantic gap between modal-
ities. Extensive experiments on both RGB-Thermal and RGB-Depth counting datasets
demonstrate its superior performance compared to previous methods. Code available at
https://github.com/Mr-Monday/Multi-modal-Crowd-Counting-via-Modal-Emulation.

1 Introduction
Crowd counting is an essential research topic in the field of machine perception. The goal of
this task is to accurately estimate the number of people in an image. Over the past decade,
crowd counting has been widely used in various fields [19, 35]. Existing crowd counting
methods mainly focus on the visual features of RGB images [12, 15, 16, 18, 22, 23, 24] may
have limitations when confronted with intricate environments like occlusions and shadows.
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Recently, multi-modal crowd counting has gained increasing attention for its ability to
address the limitations of using only the visible modality. Fusing thermal or depth images
with RGB images can significantly improve counting performance, especially in challeng-
ing scenes with low light and occlusion. Most of the previous multi-modal crowd counting
approaches [9, 44] are based on convolutional structures for multi-modal fusion, and show
that integrating thermal or depth images with RGB images improves crowd counting perfor-
mance. Nevertheless, simple fusion methods [20, 30] are limited in their ability to fully cap-
ture the complementarity between modalities. Recent studies have shown the effectiveness
of transformer models in multi-modal tasks [21, 29]. For instance, Wu et al. [34] introduce
a Mutual Attention Transformer (MAT) that uses a cross-attention mechanism to capture the
complementarity of different modalities for crowd counting. However, cross-attention mech-
anisms in most existing methods may primarily capture multi-modal interactions rather than
explore modal alignment, which may limit the full fusion of multi-modal data.

This paper tackles the multi-modal counting problem from a new perspective, arguing
that a superior multi-modal feature encoder should be capable of both fusing and emulat-
ing modal features. By transforming the input of one modality into the features of another
through simple and efficient operations, we can assume that the encoder can comprehend
and align two distinct modalities well enough.

Based on the above analysis, in this paper, we propose a modal emulation-based multi-
modal crowd counting approach that leverages a two-pass learning paradigm to perform
efficient modal emulation, alignment, and fusion, as illustrated in Figure 1. We conduct
extensive experiments on two widely used RGB-T and RGB-D multi-modal crowd-counting
benchmarks. The results show that our proposed method outperforms previous methods
and demonstrates the effectiveness of our method in leveraging multi-modal information for
crowd counting. The technical contributions can be further summarized as follows:

• We propose a two-pass learning paradigm for multi-modal crowd counting. In addition
to the normal multi-modal inference pass, we propose a cross-modal emulation pass
that encourages the model to coordinate different modalities. This two-pass paradigm
makes our approach distinct from traditional methods.

• We propose a modality alignment loss to align the outputs of the two passes and bridge
the semantic gap between different modalities.

• We develop a hybrid cross-modal attention module, which consists of a straight at-
tention mechanism that focuses more on global attention and a modulated attention
mechanism that emphasizes local attention, to enhance multi-modal fusion power.

2 Related Work

2.1 Multi-modal Crowd Counting
Currently, the crowd counting task has been extensively studied [4, 11, 13, 14, 17, 23, 31,
40]. To enhance the counting accuracy, several works have introduced information from
other modalities, such as thermal or depth [2, 7, 25, 26, 34, 37, 39, 44]. Lian et al. [9, 10]
introduce a large-scale RGB-D crowd counting dataset and leverage a depth prior and a
density map to improve the head/non-head classification in the detection network. Zhang et
al. [41] adopt a CSCA method to effectively capture and integrate information from different
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modalities. Zhou et al. [43] propose a dual-branch enhanced feature fusion network to fuse
RGB-thermal features. Liu et al. [20] and Tang et al. [30] introduce a three-stream network
for multi-modal fusion. Zhou et al. [44] propose a multimodality cross-guided compensation
coordination network to predict crowd density maps by complementing different modules.
However, these multi-modal approaches do not fully explore the modality alignment issue.

2.2 Transformer for Multi-modal
Many transformer-based methods were proposed for multi-modal tasks [36, 42]. Vilbert
[21] and LXMERT [29] use the cross-attention mechanism to learn vision-and-language
connections. Zhu et al. [45] propose a multi-modal feature pyramid transformer that fuses
different modalities by intra-modal and inter-modal feature pyramid transformer. Zhang et
al. [38] design a cross-modal feature rectification module to calibrate bi-modal features and
a two-stage feature fusion module to enhance the information interaction.

2.3 Prompting Learning
Recently, prompting learning has achieved great success in computer vision tasks [6, 32,
33]. Zhu et al. [5] develop a visual prompt multi-modal tracking framework for various
downstream multi-modal tracking tasks by learning modal-relevant prompts. Li et al. [8]
utilize a prompting method to extract fusion representations between different modalities.

It is crucial to emphasize that none of the previously mentioned methods encompass the
idea of cross-modal emulation, which constitutes the central focus of our paper. Conse-
quently, the foundational motivation, the implementation, and the pertinent loss functions
employed to fine-tune the prompts diverge markedly from those outlined in previous work.

3 Method
Figure 1 presents an overview of the framework, which mainly consists of a Multi-modal In-
ference (MMI) pass and a Cross-modal Emulation (CME) pass. The two passes share most
of the network structure and weights. And we place the proposed Hybrid Cross-modal At-
tention (HCMA) module behind each block of the dual-channel VGG19-like network [20].
Specifically, given an RGB image and a thermal image, to maintain the specific information
of each modality, we feed them into the first three blocks of VGG19 [27] ϕr and ϕt to extract
modality-specific features of individual modality Fr,Ft ∈ RC×H×W , where C, W , and H are
the channel, width, and height, respectively. And then, the 2D feature Fr,Ft are embedded
and flattened to a sequence of patch embeddings Xr,Xt ∈ RL×D, where L is the number of
patches, and D is the patch dimension. To fully fuse the information of the two modalities,
we introduce the MMI pass which consists of the HCMA module into the adjacent block
of the VGG19 to capture global-local complementarity information. Meanwhile, the CME
pass can modulate Fr features into pseudo-thermal features F̄t to enhance modality align-
ment. Similarly, the Ft features can also be modulated into pseudo-RGB features F̄r. Next,
the features produced by both passes are fed into the modality alignment loss, which aims
to bridge the semantic gap across different modalities. Afterward, the output features of the
MMI pass are linearly combined using a weighted sum and fed into a regression head to
generate a prediction for the final high-fidelity crowd density map D̂. Finally, we combine
the Bayesian Loss [22] to constrain the training of the overall model.
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Figure 1: Illustration of the proposed framework. Specifically, our framework consists of two passes: the
Multi-modal Inference (MMI) pass and the Cross-modal Emulation (CME) pass. The MMI pass uses a hybrid
cross-modal attention module to fuse global and local modalities. The CME pass shares the structure and weights
with the MMI but emulates features of one modality into another, i.e., Fr → F̄t and Ft → F̄r , using an additional
attention prompting module. The process of emulation fosters the coordination of different modalities. Moreover,
a loss function for modality alignment is employed to bridge the semantic gap that exists between these modalities.

3.1 Multi-modal Inference

In the Multi-modal Inference pass, we design the HCMA module, which comprises two
types of attention mechanisms: straight cross-modal attention and modulated cross-modal
attention, as shown in Figure 2.
Straight Cross-modal Attention

To capture long-range contextual information by fusing global information from both
modalities, we introduce the Straight Cross-modal Attention (SCMA) mechanism based on
Multi-head Attention (MHA) [1], as shown in Figure 2 (a). Specifically, different modal
patch embeddings Xr and Xt are linearly projected to produce their queries, keys, and values,
respectively, which are denoted as Qr,Kr,Vr and Qt ,Kt ,Vt . Then, we perform straight cross-
modal attention, which can be calculated as follows:

Hr = s
(

QrKT
t√

d

)
Vt , Ht = s

(
QtKT

r√
d

)
Vr (1)

where H terms the output of the attention head, s terms the softmax function, and 1√
d

is
the scaling factor based on the query/key dimension d. Finally, the outputs of each head are
concatenated and fed to a series of operations including dropouts and residual concatenation,
and then reshaped into 2D features to obtain the fused global features Fg

r and Fg
t , where

Fg
r ,F

g
t ∈ RC

′×H×W .
Modulated Cross-modal Attention

We introduce the Modulated Cross-modal Attention (MCMA) mechanism to fuse local
details in different modalities and obtain modulated complementary features, as shown in
Figure 2 (b). First, the patch embeddings Xr and Xt are reshaped into 2D feature maps F̃r and
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Figure 2: Architecture of the Hybrid Cross-Modal Attention Module. (a) Straight Cross-modal Attention is used
for global multi-modal fusion. (b) Modulated Cross-modal Attention is used to fuse local details, where the ⊙, σ⃝
and c⃝ denote Hadamard product, Sigmoid function, and Concatenation operation, respectively.

F̃t ∈ RC
′×H×W , respectively. These feature maps are then fed to the modulated cross-modal

attention mechanism to capture local complementary information:

F l
r = φr(F̃r)⊙σ(φt(F̃t))+ F̃r,F l

t = φt(F̃t)⊙σ(φr(F̃r))+ F̃t , (2)

where φ , ⊙, and σ denote a two-layer convolutional layer, Hadamard product, and Sigmoid
function, respectively.

To combine complementary global and local features, we simply concatenate them to-
gether along the channel dimension and introduce a convolutional layer with 1×1 convolu-
tion kernel to reduce the concatenated features to the C

′
dimension. Then, we feed them into

a two-layer feed-forward network ( f ) to obtain the fused feature:

F̂r = fr([Fg
r ,F

l
r ]), F̂t = ft([F

g
t ,F

l
t ]), (3)

where the [,] defines the concatenation operation.
We further diversify the contributions of different modality features and assign weights

to each modality based on their importance or relevance. The two modalities are then fused
as a weighted sum and input to the regression head γ:

D̂ = γ(αF̂r +β F̂t), (4)

where α,β ∈ [0,1] are learnable parameters.

3.2 Cross-modal Emulation
As we argued in the introduction, modal emulation, by which the feature of one modality is
converted into the one of another modality, is an important means of allowing models to fully
comprehend and align different modalities. Motivated by this idea, we propose a cross-modal
emulation pass to realize cross-modal modulation between the RGB and thermal features.

We design the CME based on attention prompting [32] which inserts prompts to the
multi-head self-attention layer. We split the prompts Pr of RGB modal features into sub-
prompts Pk

r , Pv
r with the same sequence length, and prepend them to the key K p

r and value
V p

r vectors while keeping query Qp
r vectors. Qp

r ,K
p
r and V p

r vectors are generated by the
RGB features Xr. Then, we can define the function of attention prompting as:
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Fp
r = s

(
Qp

r [Pk
r ,K

p
r ]

T
√

d

)
[Pv

r ,V
p

r ], (5)

Similarly, we can also get the attention prompting of thermal features:

Fp
t = s

(
Qp

t [Pk
t ,K

p
t ]

T
√

d

)
[Pv

t ,V
p

t ], (6)

Finally, through the CME pass ψ , the RGB features can be transformed to resemble the
thermal features, which are called the pseudo thermal features F̄t . Similarly, we can also
obtain pseudo RGB features F̄r:

[F̄t , F̄r] = ψ(Fp
r ,F

p
t ). (7)

By converting one modality to another, the CME pass effectively modulates the feature
representations of different modalities and enhance their alignment to better fuse information
from different modalities. Notably, the CME pass is executed only in the training phase.
Therefore, it does not increase the model size and extra overhead in the testing phase.

3.3 Overall loss function
Modality Alignment Loss. To align the outputs of the two passes to bridge the semantic
gap between modalities, we use a Consistency Loss:

LCL =
M

∑
i=1

(
Dis

(
F̂ i

r , F̄ i
r

)
+Dis

(
F̂ i

t , F̄ i
t

))
, (8)

where M is the number of training samples, the Dis(·) is the distance metric and we simply
use the Euclidean distance in our experiments.

Counting Loss. We adopt the Bayesian Loss (BL) [22] for crowd counting:

LBL =
M

∑
i=1

∣∣∣∣∣1−⟨D̂,
N (Di,σ

2I2×2)

∑
M
j=1N (D j,σ2I2×2)

⟩

∣∣∣∣∣ , (9)

N (·, ·) is a Normal distribution centered at the ith head point Di with standard deviation σ .
Finally, the overall loss is

L= LBL +LCL. (10)

4 Experiments
We conduct experiments on two challenging datasets. RGBT-CC contains 2,030 RGB-T
image pairs, each with the size of 640× 480. We follow [20] and use 1,030, 200, and 800
pairs for training, validation, and testing, respectively. ShanghaiTechRGBD is a large-scale
RGB-depth crowd counting dataset of 2,193 images [9]. Each sample includes both an RGB
image and a corresponding depth map. 1,193 samples are assigned to the training set and
the remaining ones for testing.

Implementation details. We implement our model on the Pytorch framework with an
NVIDIA RTX 3090 GPU. The CME and MMI passes share most of the network structure
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Table 1: Comparison with the state-of-the-art methods on RGBT-CC dataset.
Method Venue GAME(0) GAME(1) GAME(2) GAME(3) RMSE

UCNet [39] CVPR2020 33.96 42.42 53.06 65.07 56.31
HDFNet [26] ECCV2020 22.36 27.79 33.68 42.48 33.93
MVMS [40] CVPR2019 19.97 25.10 31.02 38.91 33.97
BBSNet [2] ECCV2020 19.56 25.07 31.25 39.24 32.48
CmCaF [7] TII2022 15.87 19.92 24.65 28.01 29.31
IADM [20] CVPR2021 15.61 19.95 24.69 32.89 28.18
CSCA [41] ACCV2022 14.32 18.91 23.81 32.47 26.01

TAFNet [30] ISCAS2022 12.38 16.98 21.86 30.19 22.45
BL+MAT [34] ICME2022 12.35 16.29 20.81 29.09 22.53
DEFNet [43] TITS2022 11.90 16.08 20.19 27.27 21.09
MC3Net [44] TITS2023 11.47 15.06 19.40 27.95 20.59
Ours-small 11.68 16.12 20.58 28.42 19.06
Ours-base 11.23 14.98 18.91 26.54 19.85

Table 2: Comparison with the state-of-the-art methods on ShanghaiTechRGBD dataset.
Method Venue GAME(0) GAME(1) GAME(2) GAME(3) RMSE

UCNet [39] CVPR2020 10.81 15.24 22.04 32.98 15.70
DetNet [14] CVPR2018 9.74 - - - 13.14

HDFNet [26] ECCV2020 8.32 13.93 17.97 22.62 13.01
CL [4] ECCV2018 7.32 - - - 10.48

BBSNet [2] ECCV2020 6.26 8.53 11.80 16.46 9.26
BL+MAT [34] ICME2022 5.39 6.73 8.98 13.66 7.77

RDNet [9] CVPR2019 4.96 - - - 7.22
CSCA [41] ACCV2022 4.39 6.47 8.82 11.76 6.39
IADM [20] CVPR2021 4.38 5.95 8.02 11.02 7.06

DPDNet [10] TPAMI2021 4.23 5.67 7.04 9.64 6.75
PESSNet [37] TITS2023 4.10 - - - 6.02
Ours-small 4.73 6.48 9.74 16.44 6.88
Ours-base 3.80 5.36 7.71 12.57 5.52

and weights. CME is implemented by incorporating an attention prompting module, with
five learnable prompts, before the first HCMA block of MMI. In Figure 1, the number of
HCMA blocks N is set to 3. In our implementation, patch dimension D is set to 768. The
SCMA mechanism is set to 1 layer with 4 heads, the patch size of the first HCMA block is
set to 2, while the last two blocks were set to 1. This model has 160M parameters, which is
considered as our base model. We also design a small model with 82M parameters, where
the patch dimension D in the three HCAM blocks are set to 256, 512, and 512, respectively.
In the training phase, we adopt Adam as the optimizer, the learning rate is set to 0.00001. We
set the batch size to 32 on the RGBT-CC dataset and batch size to 1 on the RGB-D dataset,
respectively. Normal data augmentation is applied to the input images, including random
crop and flip. The input images are randomly cropped to 256× 256 for RGBT-CC dataset
and 1024× 1024 for RGB-D dataset. The max training epoch is set to 1500. The Root
Mean Square Error (RMSE) [28] and the Grid Average Mean Absolute Error (GAME) [3]
are adopted to evaluate the performance.

4.1 Comparison with State-of-the-Art Methods
On the RGBT-CC dataset, the performance of all compared methods is shown in Table 1. It
could be found that the proposed method achieves better performance on evaluation metrics.
For example, compared to MC3Net, our model significantly improves counting performance,
reducing GAME(0) to 11.23 and RMSE to 19.85, respectively. Our model stands out due to
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Figure 3: Visualization results for generating crowd density maps with different models.

its specific modal emulation ability to enhance the alignment and fusion of representations
between RGB images and thermal images. We compare the visualization results of generat-
ing crowd density maps using different models to further validate our method in Figure 3.

Moreover, we evaluate the ShanghaiTech-RGBD dataset. The results in Table 2 demon-
strate that our method outperforms previous advanced models in terms of the main evaluation
metrics (i.e., GAME(0), and RMSE). Specifically, our method achieves the lowest GAME(0)
of 3.80 and RMSE of 5.52. The superior performance of our method demonstrates its gen-
erality and effectiveness in addressing multi-modal crowd counting tasks.

4.2 Detailed Discussion

Ablation Study. We conducted a comprehensive study to evaluate the contribution of each
component to the overall performance of the framework, as shown in Table 3. We start with
the baseline, a two-stream expansion of the BL approach [22]. Then, by incorporating the
HCMA module consisting of SCMA and MCMA into the multi-modal inference process,
our method consistently reduces the counting errors, specifically, by 6.25 and 9.74 in terms
of GAME(0) and RMSE when compared with the baselines. The results demonstrate that
the HCMA module contributes to enhancing the fusion of local information and global rep-
resentation between the two modalities. Furthermore, when using the CME pass with the
attention prompting module, the best performance is achieved (i.e., GAME(0) is 11.23, and
RMSE is 19.85). The success of the CME pass can be attributed to its ability to effectively
coordinate information from different modalities. By aligning and fusing the modalities, the
overall model performance is improved.

Table 3: Ablation study on RGBT-CC dataset.
MMI CME GAME(0) GAME(1) GAME(2) GAME(3) RMSESCMA MCMA AP IP

× × × - 18.68 22.91 28.06 35.87 31.42√
× × - 15.37 20.63 25.29 33.01 27.60√ √

× - 12.43 16.58 21.26 28.77 21.68√ √
-

√
11.48 15.95 20.56 28.57 19.57√ √ √

- 11.23 14.98 18.91 26.54 19.85

For the CME pass, we conduct experiments with different prompting techniques, namely
attention prompting (AP) and input prompting (IP) [6], in Table 3. Both prompting tech-
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Figure 4: Distribution of the relative L1 distances between the real and pseudo features.

niques work for multi-modal crowd counting. However, we notice a trend where AP outper-
forms IP. This can be attributed to the fact that IP requires discarding the prompts in each
HCMA block, which may potentially reduce its effectiveness.

We conduct experiments to compare HCMA with the vanilla cross-attention module in
transformers as shown in Table 4. Specifically, we replace the HCMA module with the
cross-attention module and ensure that both models have a similar number of parameters
(i.e. 151M for this model and 160M for ours). The results indicate that the improvement
achieved by our proposed method is not primarily attributable to the simple introduction of
the cross-attention module or additional parameters, but instead benefited from the carefully-
designed HCMA and attention prompting modules.

Table 4: Comparison to the vanilla cross-attention (VCA) module.
Model GAME(0) GAME(1) GAME(2) GAME(3) RMSE
VCA 15.11 19.66 24.29 31.92 27.94
Ours 11.23 14.98 18.91 26.54 19.85

Effectiveness of CME pass. We tabulate the distribution of the relative L1 distances
between the thermal and pseudo-thermal features (as well as the RGB and pseudo-RGB
features). The results are reported in Figure 4, where the horizontal axis indicates the ratio
of the L1 distance to the average L1 norm of the real features, and the vertical axis represents
the percentage of the test samples among 800. For thermal and pseudo-thermal features,
58.88% of the samples have the relative L1 distances below 0.04, and 92.63% of the samples
are below 0.08. Similarly, for RGB and pseudo-RGB features, 64.13% of samples are below
0.04, and 99.00% of samples are below 0.08. This suggests that most of the pseudo samples
only have a slight difference from the targeted samples. These results suggest that the CME
pass well coordinates the two modalities.

Table 5: Impact of direct use of pseudo-features.
GAME(0) GAME(1) GAME(2) GAME(3) RMSE

W. PF 12.21 16.39 21.12 28.70 19.98
W/O PF 11.23 14.98 18.91 26.54 19.85

Nevertheless, an additional inquiry arises: can these pseudo-modal features be directly
employed in generating the final density map output? We conduct an evaluation as shown
in Table 5 to address it. When we concatenate the pseudo features and real features to
feed the regression head, it can be found that the model performance is degraded. The
rationale behind this phenomenon may lie in the fact that despite the pseudo-features closely
approximating the features of the target modality, there still exist certain discrepancies. The
direct amalgamation of one feature and its inferior counterpart does not lead to improvement
but instead may result in a performance decline. In addition, if we use pseudo features for
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generating the density map, it means that the data needs to go through both the CME and
MMI passes during testing. Although the MMI and CME passes share parameters, this will
add extra overhead.

5 Conclusion
We propose an effective emulation-based two-pass framework for multi-modal crowd count-
ing. Our framework leverages a multi-modal inference pass that includes a hybrid cross-
modal attention module, which fuses global and local complementary information from dif-
ferent modalities, as well as a cross-modal emulation pass that encourages the model to
coordinate different modalities through attention prompting. Additionally, we introduce a
modal alignment module to bridge the semantic gap between modalities. Through quanti-
tative and qualitative experiments on RGB-T and RGB-D datasets, we demonstrate that our
approach achieves competitive performance and high effectiveness for crowd counting. Our
framework has promising potential to be applied to a variety of multi-modal tasks, which
warrants further investigation in future research.
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