KRAHN ET AL.: QP-SBGD 1

Projected Stochastic Gradient Descent with
Quantum Annealed Binary Gradients

Maximilian Krahn'? 1 Aalto University,
Michele Sasdelli® Espoo, Finland
Fengyi Yang® 2 Imperial College London,
Viadislay Golvanik® London, UK

adisiav o y1an| 3 University of Adelaide,
Juho Kannala Adelaide, Australia
Tat-Jun Chin® 4MPI for Informatics,
Tolga Birdal? Saarbriicken, Germany

Appendix

This appendix supplements our paper with the additional material referred to in the main
text. This includes the proofs of the propositions (specifically the usage of the binary map as
gradient approximation, the convergence and P-SBGD, and the QUBO derivation), supporting
evidence of the directionality and additional experimental evaluations, further experiments on
the UCI adult dataset, MNIST and analysis of the D-Wave QUBO problems. In addition, we
furnish extra information on related work, implementation specifics, and function definitions.

1 Theoretical Results

In Tab. 1 we list the most important notations for the paper and appendix.

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 KRAHN ET AL.: QP-SBGD

Notation Explanation
f R"™ — R™any function (neural networks)
n dimension of the input of f
m dimension of the output of f
y evaluation of f atx;y = f(x)
E(y) R™— R differentiable, Lipschitz continuous function
Es(x) R"™— Rloss function; Ef(x) := E(f(x))

K; Lipschitz constant for the i dimension of E ¢

k 1 yn Ki
t

n &i=1"]
current iteration
number of total iterations
{a;}; series of learning rates,
{x'}; series of iterates, i.e.parameters updated over iterations.
ViE r(X) stochastic gradient w.r.t. X
jt ™ column of the Jacobian map R"™ 5 J' := Vy evaluated at x’
Z! in R™": normalized Jacobian
in R" a column vector fo the normalized Jacobian: j’ /||’ II?
Table 1: Notations

1.1 Approximating Euclidean gradients with binary gradients

Before we start with the proof we restate Prop. 1 from the paper.

Proposition 1. Let Iy : R” — R” denote the relaxed or continuous version of our projection
map. Replacing U by a normalized gradient w.r.t. y and using VyE ¢(x) as an input, Iy
satisfies:

Mz (VyEf(x)) =a1gmin||?fo(x)|xz -bll5. (1)
eR"

Proof. We now give the proof for the continuous map given in Eq (1), where we optimise
over R". We now expand Eq (1):

OE R T) SN
— =argmin) |——-g z|". 2)
ox geRn ; ay;

This statement is true if every term in the sum is 0. If this holds, we can replace g by %—f and

seek to have

0E OET ,
a_w_& Zl-—(). (3)

Assuming differentiability and compositionally, we can use the chain rule to write

0E_6E.%

= _= . 4
ox Jdy; 0x @)

By Eq (4), and the definition of zﬁ we can reformulate the left hand side of Eq (3) as follows:

KRAHN ET AL.: QP-SBGD 3

23 23 Byl 3)’1 2 a_E OE ayl 3)% a))l 2
o (ax) (e ||) - ay,(ax) (e ||))
oE dy; . 0y; dyi ,, 0yi
= ((y/u yn) (y/n yn)) (®)
Yi
—0—E(1—1) 0 foralli. (7
dyi

Alternatively, we can arrive at the same proof by using the fact that Jacobians map tangent
vectors, i.e., local isomorphisms between the tangent spaces of input and output points. Finally,
by satisfying Eq (7) for all i, we see that in the continuous space, Eq (2) is fulfilled. O

Note that we can use this mapping to calculate binary updates also for multidimensional
function parameters, such as matrices. This can easily be done by vectorising the parameter
matrix into m vectors and computing m times the mapping of the gradient of a parameter
vector.

1.2 Proof of the fixed point theorem

Before we prove the fixed point theorem, we present the definition of a fixed point and
reiterating the theorem.

Definition 1 (Fixed point). s € {+1}" is a fixed point for P-SBGD, if s’ = s in Dfn. 2 implies
that s’ =s for all 7 = 1,2, ..., where s’ = sign(x’). We say that P-SBGD converges if there
exists ¢ < oo such that s’ is a fixed point.

Theorem 1 (Fixed point of P-SBGD). Let Z* be the normalised Jacobian of the function f
ats € {x1}" . Let X’ be the iterative produced by Eq. 7 from the paper. We further assume,
that for i € [n] (VxEf(x")); # 0 and (VxEf(s)); # 0. Under the assumption of a diverging
learning rate (3;cyy@; = o and a; > 0) , s is a fixed point for P-SBGD if and only if (&)
—IIzs (VyE ¢(s)) =s. This point might not exist, in which case we cannot state the convergence
of P-SBGD for any starting point x” € R”.

Proof. Our proof follows closely the proof of [4]. We first define the fixed point as a stationary
point. We start with the direction =. Hence we assume that s € {+1}" is a fixed point. We
start by restating the update rule for point x starting from a fixed point s:
T-1
x =x"— Z Tz (VyEf(s)). ®)

t=0

Hence x” = x? holds by definition for all T € N,. As the fixed point is the same in the
space of reals or binary variables, we are allowed to take the sign of both sides:
T-1
s :=sign(x’) = sign (XO —Hzr-1(VyEf(s)) Z ail.)
i=0
Taking the limit 7 — oo and applying the assumption that }’, a; = oo yields
T

s; = TIT:O sign [x° = T7- (VyEf(s)) Za,) =sign(-Hzr-1 (VyEf(s)))i) = —Mzr-1 (VyE£(s))),
t=0 i

Citation
Citation
{Bai, Wang, and Liberty} 2018

4 KRAHN ET AL.: QP-SBGD

concluding that s = —Ilzr-1 (VyE£(s))).

Next, we prove the direction " < ". If s obeys that —Ilzr-1 (VyE¢(s)) =s for all i € [n],
then if we take any x such that sign (XO) =s,x’ will move in a straight line towards the
direction of —~IIzr-1 (VyE£(s)). In other words, sign (x) =sign (x) =s forall 1 =0,1,2,....
Therefore, by definition, s is a fixed point. O

1.3 QUBO term of BM

Proposition 2 (BM as QUBO). The binary projection Ilz: (v) in Dfn. 1 admits the following
Ising Model or quadratic unconstrained binary optimisation (QUBO) form:

My(v) = argmin g ZQ,g+s g (10)
ge{-1,1}" i=1

where s=-23" viu;, Q; =uw; " and Q= 37, Q;.

Proof.
Ty (v) = argmmZHv, g uil[3 (11)
ge{-1,1}"
= argmin Z(vl—ul 2) (vi-u;'g) (12)
ge{-1,1}" 2
2
= argmin g'wu,'g-2) viu; g+ (13)
arg “}nZ Z Z
= argmin g ZQ,g+s g (14)

ge{-1,1}" i=1

where s =-2Y" viu;, Q;=uu; T and Q=Y Q;.

Runtime analysis on quantum and central processing units. In general the experiments are
relatively easy on the hardware and are run within minutes on a single CPU. Hence we will
only focus on the QPU time, as well as on the graph benchmarks. For all five Rosenbrock runs
we use a total of one minute QPU time. The small experiments on the Adult dataset as well
as the Karateclub network are solved within an hour. Experiments on graph convolutional
neural networks for the bigger datasets Cora and Pubmed run on the CPU for six hours. In
those experiments, we did not need to use any GPU time during training. The experiments
on D-Wave for MLPs are running for 6 hours and one run consumes about a minute of QPU
time. This is explainable with the minor embeddings. Calculating those minor embeddings
is a non-critical combinatorial optimisation problem and, at the moment, is known to be a
bottleneck for quantum annealers. We are hopeful that those can be accelerated and make all
QA algorithms faster, in the future.

To generate all the experiments in our paper we spent an hour of QPU time on a D-Wave
quantum annealer as well as 1000h of CPU time.

KRAHN ET AL.: QP-SBGD 5

Figure 1: Label generation on MNIST [27] (example). Left: Initial image of the digit “2”; Middle: Extracted
keypoint features with the superpixel approach [33]; Right: sampling four lines to determine binary features.

2 Implementation Details

Our code, which we will release, is implemented in PyTorch [35]. To calculate all gradients in
all the experiments, we use the torch autograd library. In the graph experiments with Cora and
Pubmed we use the Adam optimiser [26] with the PyTorch implementation. For BinaryCon-
nect [16] we use our own implementation. However, contrary to the BinnaryConnect [16] paper
we are using our definition of the sign function and not theirs, which projects sign(0) = 1 or
does some random assigning. For ProxQuant we also use our own implementation, following
the paper. The code will be released upon acceptance.

2.1 MNIST Feature Extraction

In the paper, we already described how we extract the features of the MNIST images. In this
section, we give a more detailed overview of this procedure as well as a qualitative example in
Fig. 1. To this end, we follow a three-step procedure to generate the 16-bit features: (i) We
use the key points generated from the method described in [33]. They are marked in Fig. 1 as
blue dots in the middle and right image. Afterwards in step (ii) we sample 16 lines, which all
run through the centroid of the image. Fig. | in the right image contains four out of the 16
lines drawn in green. For the last and (iii) step, we count the number of feature points above
and below the line. If there are more key points above line i than below, then we assign the
feature i to 1; otherwise to —1.

2.2 Definitions

Hard tanh. Hard tanh is defined as follows:

-1 ifx<-1,
hardTanh(x) = ¢ x if —1l<x<l,. (15)
1 ifx>1,

Citation
Citation
{LeCun and Cortes} 2010

Citation
Citation
{Monti, Boscaini, Masci, Rodola, Svoboda, and Bronstein} 2017

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Courbariaux, Bengio, and David} 2015

Citation
Citation
{Courbariaux, Bengio, and David} 2015

Citation
Citation
{Monti, Boscaini, Masci, Rodola, Svoboda, and Bronstein} 2017

6 KRAHN ET AL.: QP-SBGD

sign. We use the following definition of the sign function:

. -1 ifx <0,
sign(x) = {l x>0 (16)

3 CDP hypothesis test for neural networks

We will use the Hy hypothesis Z test to determine if our algorithm is more likely to point in
the same direction as the gradient. As a comparison, we will conduct the same test on the
established binary baseline signSGD. We choose as our hypothesis:

Hj that the projected gradient points in a random direction, that means:

pi(x") =Prob (Mz (VyE ¢ (x")); = sign(VxE ¢ (x"));) = 0.5 (17)
H; that the projected gradient points in the same/opposite direction
pi(x") = Prob (Hz (VyE 7 (x")); = sign(VxE s (x"));) > 0.5 (18)
or
pi(x") =Prob (Mz (VyEp(x")); = —sign(VxE¢(x"));) > 0.5 19)

We can clearly see that either Hy or Hj is true.

The data collection is done by measuring the gradients during training on the MNIST
experiment in the paper, where we use the gradient on the full training set as the real
non-stochastic gradient.

Let k be the number of occurrences where the gradient points in the same direction as our
projected gradient, p = 0.5 as our Hy probability and n as the number of compared gradients.
The Z test for binary variables is formulated as follows:

k—np
Vap(1=p)

A Z value in the interval of [—1.96,1.96] provides a 95% certainty that Hy is fulfilled.

The following two tables Tab. 2 and Tab. 3 show a sample collection from 5 runs. In the
first column, we describe the number of samples, where our projected gradient and the real
gradient point in the same direction, in the second column we have all samples and in the last
column we note the Z value for the experimental run, which was calculated with Eq (20).

Z= (20)

Discussion. As we can see in Tab. 2 and Tab. 3, when calculating the gradient with QP-
SBGD the Z-value is always bigger than 1.96. This shows that we reject the Hy hypothesis
and accept the Hy hypothesis. Hence we can be confident that the CDP holds in our case.
As the tables further present, the projected gradients point in the same direction as the real
gradient, then away. Hence we can narrow down the H; hypothesis to the CDP assumption.
Further to verify our experiments we also tested signSGD, where the CDP assumption is
indicated by a few lemmas. Here we observe that Hy can be rejected, but on a weaker basis, as
the Z values are smaller. This further indicates that our algorithm fulfils the CDP assumption.

4 Additional experiments

|

KRAHN ET AL.: QP-SBGD

of same direction ‘ total # of samples | Z-value # of same direction | total # of samples | Z-value

2285 3915 10.4 2334 4626 0.61
2199 3647 12.4 732 1176 8.39
2311 3886 11.8 339 630 1.91
2334 3984 10.8 2559 4702 6.06
2356 3990 11.4 2103 4683 -6.9
Table 2: Samples from QP-SBGD directions. Table 3: Samples from signSGD.

Figure 3: Classification of 1s Figure 4: Classification of 2s

0.

0.7

In this section, we present additional experiments on the UCI

adult dataset, some qualitative examples on the MNIST dataset, >:j //\M?
and some D-Wave analysis. g B an e S

0.4 — BC (SGD)

—— BC (signSGD)
0.3 —— QP-SBGD (G)
QP-SBGD (D)

4.1 Quantitative results on UCI Adult T R

We now use three manually selected features and 30 batches Fjgure 2: Training accuracy on a
with a batch size of 20 to train a two-layer neural network with subset of the UCI Adult dataset for
the input dimension of 3, hidden dimension of 5 and the output ~binary classification.

of 2. Fig. 2 reports the training accuracy where we observe that QP-SBGD (G) outperforms
the baselines as well as our D-Wave optimiser, QP-SBGD (D), which nevertheless performs
better than or on par with BC (signSGD).

4.2 Qualitative Results of MNIST classification

In Fig. 3 and Fig. 4, we show a few qualitative results on the MINIST digits dataset. We
select one of the networks trained to classify the digits *1’ and ’2’ with QP-SBGD (D-Wave).
Similar to the numbers reported in Tab 1 in the paper, the accuracy on those samples is 72.5%.

4.3 Additional analysis of the QUBO problems using D-Wave annealer

Embedding. To solve QUBO problems on D-Wave, we minor-embed them onto the Pegasus
architecture. As shown in Fig. 5, this operation interprets the logical graph (left) and
implements each logical bit with multiple, redundant qubits (right). The graph in the figure is
an exemplary QUBO corresponding to training the third layer in our MNIST experiment.

8 KRAHN ET AL.: QP-SBGD

Figure 5: Left: QUBO problem graph to update the weights of the second layer in the first training iteration Right:
Embedded problem graph on the Pegasus [9] D-Wave architecture.

Evolution of the QUBO Next, we investigate the development of the QUBO during training.
In Fig. 6 we observe how the QUBO changes over time/iterations. The QUBO matrices shown
in the figure are examples from the MNIST experiment (Sec. 3.3.2) taken from the first layer.
We display one QUBO after every 10" update. We observe here that all QUBOs have a rather
densely connected support of the otherwise sparse graph. This overall sparsity of the graph
enables us to embed those with minor embeddings and deploy them to the D-Wave QPU.

Sampling solutions. After embedding each QUBO problem in the D-Wave Advantage archi-
tecture, we query the quantum annealer multiple times and retrieve the solution corresponding
to the lowest energy. However, it is still interesting to see the solutions’ distribution. To
this end, we analyze QUBOs, which calculate the weight updates of the MNIST experiment
in the third layer, using D-Wave Explorer and measure a series of QUBOS, which are 10
updates apart. Sec. 4.3 plots the different energies for the sampled solutions. The histogram
in the upper left corner corresponds to the QUBO update problem in the first iteration and
the histogram in the lower right corner corresponds to the QUBO problem after 50 updates
(e.g., the 51% update). In total, we collected 1000 samples from D-Wave and compared the
energy. The resulting distribution can be described as a tail-heavy Poisson distribution, which
is shifted towards negative numbers. This type of resulting distribution is typical for problems,
which are difficult to compute.

Similarity. In Fig. 7 we compare the similarities of the sampled D-Wave solutions. Here the
10 scores with the lowest energy are compared with the Jaccard Similarity. We can see that all
QUBO solutions are fairly dissimilar to each other. As seen in the picture only the first and
fourth/fifth solutions have a relatively high similarity score of around 0.4. The indications
of that are two-fold: (i) it demonstrates the importance of finding the optimal solution, and

Citation
Citation
{{Boothby}, {Bunyk}, {Raymond}, and {Roy}} 2020

KRAHN ET AL.: QP-SBGD 9

>

Figure 6: Evolution of the QCBO formulation to calculate the weight updates for the first layer with the Quantum
Projected Stochastic Binary-Gradient Descent algorithm.

0 0
850 850
f= C
g | ‘ g
3 =)
S 3
© o0 © o0
5000 10000 0 5000 10000

Energy Energy
n 50 a8
:
3 g25
3 =1
o 3
o o o 5

5000 10000 0 5000 10000 15000

Energy Energy
[0 n 50
g 50 3 I
j= c
g g
g 3 O sy
S © o

5000 10000 0 5000 10000 X
Energy Energy Figure 8: Jaccard similar-
ity of the 10 samples with the

Figure 7: Histogram of the different sampling energies of the weight lowest energy.

update QUBO of the third layer. In the first column, we show the histogram
of the zeroth, tenth, and twentieth updates, and in the second column the
histogram of the thirtieth, fortieth, and fiftieth updates from top to bottom

(ii) even though the D-Wave annealer cannot act like a true Bayesian posterior sampler, the
samples from its (modified) posterior are diverse and span the solution space. This also
confirms the findings of [8] in which these samples are used as alternative solutions.

Ablation studies. Fig. O tests the effect of different hyperparameters on Cora [30]. Our hybrid
optimiser, QP-SBGD, is robust to batch size changes, reported as training data percentages,
and slightly more impacted by the step size.

Spectral gap. A crucial feature is the spectral gap in QUBOs solved by a quantum annealer.
A larger spectral gap significantly enhances the likelihood of the annealer converging to
the accurate ground truth solution [32]. We now examine, via simulation, the spectral gap
corresponding to the QUBO in Prop. 2 for small MLPs. Fig. 10 plots the eigenvalues (blue
lines) of the time-varying Hamiltonian as a function of #/T, for a single binary linear layer /
with up to four neurons and batch size 1 (besides these parameters, the size of H, and hence the
number of distinct eigenvalues, depend on other factors; more on the feasibility of simulation
below). The smallest spectral gap is highlighted by a red bar in the plots. With the same
annealing time, a larger spectral gap yields a final state closer to the ground state and, thus, a
higher-quality solution. The results show that, as expected, the spectral gap shrinks gradually
with increasing problem size. While two data points are not enough to extrapolate a trend, the
exercise shows how the performance of quantum annealing depends on the hyperparameters.
In particular, the observations suggest keeping the number of neurons in each layer small.

Citation
Citation
{Birdal, Golyanik, Theobalt, and Guibas} 2021

Citation
Citation
{McCallum, Nigam, Rennie, and Seymore} 2000

Citation
Citation
{McLeod and Sasdelli} 2022

10 KRAHN ET AL.: QP-SBGD

0.6
8 0.4 8.0 4
< <
g — batchsize0.25 | 8 o
[0 0.2 atch size ©. 202 Ir0.01
batch size 0.041 — r0.001
—— batch size 0.031 —— Ir 0.0001
0.0 0.0
0 200 400 0 100 200 300 400

Epochs Epochs

Figure 9: Impact of learning rate (LR) and batch sizes on the test accuracy. We plot the mean accuracy over six
runs.

2.0 5.0 _/
T oo T
% ' g 0.0
-2.01
-5.0
0.0 0.5 1.0 0.0 0.5 1.0

t/T t/T

(a) Ng =1 neuron (b) N¢ =2 neurons

Figure 10: The eigenvalues of the QUBO Hamiltonian in Prop. 2 plotted as a function of annealing time (/7))
while training a binary linear layer with two neurons on the UCI-adult. The red bar represents the eigenvalue gap

between the ground level and the first excited level not evolving into the ground state. The minimal spectral gap
amounts to 0.03 and 0.01 in (a) and (b), respectively.

KRAHN ET AL.: QP-SBGD 11

5 Extended Related Work

Binary neural networks (BNNs). Compared to full-precision neural networks, BNNs [22]

consume less memory and provide faster inference at the cost of certain information loss.

Much effort has been devoted to mitigating performance degradation due to binarisation, as

detailed in recent surveys [36, 49]. Here, we summarise important developments based on the

recent surveys. We refer the reader to said surveys for a more complete overview.

Based on their binarisation strategies, BNN models can be categorised into naive or
optimisation-based ones. BinaryConnect [16] is an early naive training strategy which
binarises the weights by a sign function. In this way, lightweight bitwise XNOR operations
replace most real-valued arithmetic operations. BinaryNetg [22] is an extension that binarises
both weights and activations during inference and training. Dorefa-Net [53] defines new
quantisation functions for weights, activations and gradients to accelerate network training.

Optimisation-based BNNs attempt to address the accuracy drop more directly resulting
from weight and activation binarisation in the naive models while preserving the compact
nature. Following Qin et al. [36], we further categorise such works based on their optimisation
goals:

* Minimising the quantisation error. XNOR-Net introduces a scaling factor for the binary
weights and activations to generate a better approximation to the corresponding real-valued
parameters [37]. XNOR-Net++ builds on this work and fuses the scaling factors of the
weights and activations into one. The fused scaling factor is gained from discriminative
training via backpropagation [11]. Dorefa-Net defines new quantisation functions for
weights, activations and gradients instead of a pre-defined uniform quantiser to accelerate
network training [53]. LQ-Nets trains the quantisers for activations in each layer and
weights in each channel jointly with the neural network [52]. Parameterised Clipping
Activation (PACT) shifts the activation distribution via learning a quantisation scaling factor
during network training to achieve low bit-width precision [14]. LAB2 directly minimises
binarisation loss for weights using a proximal Newton algorithm [20].

» Improving the loss function. How-to-Train adds a regularisation term to encourage weight
bipolarisation in addition to the task-specific loss term [42]. LAB directly develops a
loss function during layer-wise weight binarisation [20]. ReActNet introduces a spatial
distributional loss to enforce the BNN output distribution to approximate that of the full-
precision model, on top of activation distribution shift and reshaping using new quantisation
functions [29].

* Reducing the gradient approximation error. Another stream of work focuses on the nature
of quantisation and activation functions to enable backpropagation and enhance forward
propagation. Bi-Real Net approximates the derivative of the sign function for activations
using a piecewise linear function to overcome the intrinsic discontinuity and proposes
a magnitude-aware gradient for weights [28]. HWGQ-Net designs a forward quantised
approximation and a backward continuous approximation of the ReLLU activation function
to address the learning inefficiency of BNNs [12].

Various training techniques including asymptotic optimisation, quantisation, gradient approx-

imation and network structure transformation, are adopted in some of the learning-based

models above. Standard techniques are used in optimisation, involving Adam, AdaMax, SGD

and RMSprop. For more details please refer to Qin et al. [36].

Quantum annealing. Recent progress in quantum computer vision [8] has shown that
various computer vision algorithms could benefit from QUBO-formulations and quantum

Citation
Citation
{Hubara, Courbariaux, Soudry, El-Yaniv, and Bengio} 2016

Citation
Citation
{Qin, Gong, Liu, Bai, Song, and Sebe} 2020

Citation
Citation
{Yuan and Agaian} 2021

Citation
Citation
{Courbariaux, Bengio, and David} 2015

Citation
Citation
{Hubara, Courbariaux, Soudry, El-Yaniv, and Bengio} 2016

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Qin, Gong, Liu, Bai, Song, and Sebe} 2020

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Bulat and Tzimiropoulos} 2019

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Zhang, Yang, Ye, and Hua} 2018

Citation
Citation
{Choi, Wang, Venkataramani, Chuang, Srinivasan, and Gopalakrishnan} 2018

Citation
Citation
{Hou, Yao, and Kwok} 2016

Citation
Citation
{Tang, Hua, and Wang} 2017

Citation
Citation
{Hou, Yao, and Kwok} 2016

Citation
Citation
{Liu, Shen, Savvides, and Cheng} 2020

Citation
Citation
{Liu, Wu, Luo, Yang, Liu, and Cheng} 2018

Citation
Citation
{Cai, He, Sun, and Vasconcelos} 2017

Citation
Citation
{Qin, Gong, Liu, Bai, Song, and Sebe} 2020

Citation
Citation
{Birdal, Golyanik, Theobalt, and Guibas} 2021

12 KRAHN ET AL.: QP-SBGD

annealing [1, 6, 8, 13, 17, 31, 41, 50, 51]. Arthur ef al. [2] has similarly shown the advantage
for several machine learning models. A new paradigm was developed recently to harness
the computational power of quantum annealers for the training of BNNs [38] as well as for
optimising in binary variables [50]. As an early work in this direction, a simple version of
BNN was examined. As alluded to above, our work improves the scalability of their approach
by adopting a hybrid and incremental training scheme.

Quantum neural networks. As an emerging field, quantum machine learning [7, 10, 40, 47]
has shown that the training of linear regression, support vector machines and k-means clustering
admit QUBO-like formulations [2], whereas the first neural network variants trained on
quantum hardware were Boltzmann Machines. In parallel, quantum deep learning [18, 24, 46],
the problem of creating quantum circuits that enhance the operations of neural networks by
physically realising them, has emerged to alleviate some of the computational limitations of
classical deep learning, thanks to the efficient training algorithms [5, 25]. However, a severe
challenge remains to be implementing non-linearities and other non-unitary operations with
quantum unitaries [24, 39]. Similarly, quantum convolutional neural networks (Q-CNNs) [15]
have been developed with the mindset of implementing the analogue of classical CNN
operations via quantum gates. These works are fundamentally different to ours, as they try
to realise quantum implementations of machine learning algorithms, whereas we leverage
quantum computation to solve the classical problem of neural network training.

Network quantisation. Instead of training BNNs from data, network quantisation techniques
aim to reduce the precision (including to binary) of a trained full-precision neural network
in a manner that preserves accuracy; see Gholami et al. [19] for a recent survey. We stress
that quantisation fundamentally differs in formulating a BNN for execution or training on
quantum computers. In the current work, we are focusing on the most extreme kind of network
quantisation: binary neural networks. More general types of quantisation can be formulated
as a QUBO in principle [34].

Binary graph neural networks. As opposed to the plethora of methods dealing with the
binarisation and quantisation of ordinary neural networks, binary graph neural networks
are under-explored. Only a few works exist [3, 43, 44] and most of them operate on the
principles of XNOR-Net and its variants, aiming to binarise the multiplication. Still, re-
quantisation remains to be a necessary operation to avoid full-precision computations [48].
On a parallel track, developing efficient binary graph operators [23] or quantising graph neural
networks [21, 23, 54] as well as GNN-compression are somewhat studied. We refer the reader
to a recent survey [45] and find it worth mentioning that none of these procedures are friendly
for implementation on quantum hardware.

References

[1] Federica Arrigoni, Willi Menapace, Marcel Seelbach Benkner, Elisa Ricci, and Vladislav Golyanik.
Quantum motion segmentation. In European Conference on Computer Vision (ECCV), 2022.

[2] Davis Arthur, Lauren Pusey-Nazzaro, et al. Qubo formulations for training machine learning
models. Scientific reports, 11(1):1-10, 2021.

[3] Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph neural networks. In CVPR, pages
9492-9501, 2021.

[4] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. arXiv preprint arXiv:1810.00861, 2018.

Citation
Citation
{Arrigoni, Menapace, Benkner, Ricci, and Golyanik} 2022

Citation
Citation
{Bhatia, Tretschk, LÃ¤hner, {Seelbach Benkner}, MÃ¶ller, Theobalt, and Golyanik} 2023

Citation
Citation
{Birdal, Golyanik, Theobalt, and Guibas} 2021

Citation
Citation
{Chin, Suter, Chng, and Quach} 2020

Citation
Citation
{Farina, Magri, Menapace, Ricci, Golyanik, and Arrigoni} 2023

Citation
Citation
{McCormick, Klain, Herbert, Charles, Angle, Osborn, and Streit} 2022

Citation
Citation
{{Seelbach Benkner}, {Golyanik}, {Theobalt}, and {Moeller}} 2020

Citation
Citation
{Yurtsever, Birdal, and Golyanik} 2022

Citation
Citation
{Zaech, Liniger, Danelljan, Dai, and Vanprotect unhbox voidb@x protect penalty @M {}Gool} 2022

Citation
Citation
{Arthur, Pusey-Nazzaro, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Sasdelli and Chin} 2021

Citation
Citation
{Yurtsever, Birdal, and Golyanik} 2022

Citation
Citation
{Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, and Lloyd} 2017

Citation
Citation
{Broughton, Verdon, McCourt, Martinez, Yoo, Isakov, Massey, Halavati, Niu, Zlokapa, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Schuld, Sinayskiy, and Petruccione} 2015

Citation
Citation
{Wittek} 2014

Citation
Citation
{Arthur, Pusey-Nazzaro, etprotect unhbox voidb@x protect penalty @M {}al.} 2021

Citation
Citation
{Garg and Ramakrishnan} 2020

Citation
Citation
{Kerenidis, Landman, and Prakash} 2019

Citation
Citation
{Wiebe, Kapoor, and Svore} 2014

Citation
Citation
{Beer, Bondarenko, Farrelly, Osborne, Salzmann, Scheiermann, and Wolf} 2020

Citation
Citation
{Kerstin, Dmytro, Terry, Tobias, Robert, and Ramona} 2019

Citation
Citation
{Kerenidis, Landman, and Prakash} 2019

Citation
Citation
{Schuld, Sinayskiy, and Petruccione} 2014

Citation
Citation
{Cong, Choi, and Lukin} 2019

Citation
Citation
{Gholami, Kim, Dong, Yao, Mahoney, and Keutzer} 2021

Citation
Citation
{Nagel, Fournarakis, Amjad, Bondarenko, van Baalen, and Blankevoort} 2021

Citation
Citation
{Bahri, Bahl, and Zafeiriou} 2021

Citation
Citation
{Wang, Lian, Zhang, Qin, He, Lin, and Lin} 2021{}

Citation
Citation
{Wang, Wang, Yang, Yang, and Guo} 2021{}

Citation
Citation
{Yao and Li} 2022

Citation
Citation
{Jing, Yang, Wang, Song, and Tao} 2021

Citation
Citation
{Huang, Zhang, Du, Li, Zheng, Xie, and Tan} 2022

Citation
Citation
{Jing, Yang, Wang, Song, and Tao} 2021

Citation
Citation
{Zhu, Li, Mo, Hu, Li, Liu, Liang, and Cheng} 2023

Citation
Citation
{Wei and Zhao} 2022

KRAHN ET AL.: QP-SBGD 13

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel
Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature communications,
11(1):1-6, 2020.

Harshil Bhatia, Edith Tretschk, Zorah Lahner, Marcel Seelbach Benkner, Michael Moller, Christian
Theobalt, and Vladislav Golyanik. Ccuantumm: Cycle-consistent quantum-hybrid matching of
multiple shapes. In Computer Vision and Pattern Recognition (CVPR), 2023.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195-202, 2017.

Tolga Birdal, Vladislav Golyanik, Christian Theobalt, and Leonidas Guibas. Quantum permutation
synchronization. In CVPR, 2021.

Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-generation topology of d-wave
quantum processors. arXiv e-prints, 2020.

Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo,
Sergei V Isakov, Philip Massey, Ramin Halavati, Murphy Yuezhen Niu, Alexander Zlokapa,
et al. Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint
arXiv:2003.02989, 2020.

Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural networks. arXiv
preprint arXiv:1909.13863, 2019.

Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision
by half-wave gaussian quantization. In CVPR, pages 5918-5926, 2017.

Tat-Jun Chin, David Suter, Shin-Fang Chng, and James Quach. Quantum robust fitting. In ACCV,
2020.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized
neural networks. arXiv preprint arXiv:1805.06085, 2018.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15:1273-1278, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In NIPS, pages 3123-3131, 2015.

Matteo Farina, Luca Magri, Willi Menapace, Elisa Ricci, Vladislav Golyanik, and Federica
Arrigoni. Quantum multi-model fitting. In Computer Vision and Pattern Recognition (CVPR),
2023.

Siddhant Garg and Goutham Ramakrishnan. Advances in quantum deep learning: An overview.
arXiv preprint arXiv:2005.04316, 2020.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. arXiv
preprint arXiv:1611.01600, 2016.

14

KRAHN ET AL.: QP-SBGD

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Linyong Huang, Zhe Zhang, Zhaoyang Du, Shuangchen Li, Hongzhong Zheng, Yuan Xie, and
Nianxiong Tan. Epquant: A graph neural network compression approach based on product
quantization. Neurocomputing, 503:49-61, 2022.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. NIPS, 29, 2016.

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Meta-aggregator:
learning to aggregate for 1-bit graph neural networks. In CVPR, pages 5301-5310, 2021.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep
convolutional neural networks. arXiv preprint arXiv:1911.01117, 2019.

B Kerstin, B Dmytro, F Terry, O Tobias, S Robert, and W Ramona. Efficient learning for deep
quantum neural networks. Nature, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In ECCV, pages 722737, 2018.

Zechun Liu, Zhigiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise
binary neural network with generalized activation functions. In ECCV, pages 143—159. Springer,
2020.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127-163, 2000.

Timothy M McCormick, Zipporah Klain, Ian Herbert, Anthony M Charles, R Blair Angle, Bryan R
Osborn, and Roy L Streit. Multiple target tracking and filtering using bayesian diabatic quantum
annealing. arXiv preprint arXiv:2209.00615, 2022.

Cameron Robert McLeod and Michele Sasdelli. Benchmarking d-wave quantum annealers:
Spectral gap scaling of maximum cardinality matching problems. In International Conference on
Computational Science, pages 150-163. Springer, 2022.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In CVPR,
pages 5115-5124, 2017.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Ti-
jmen Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, pages 8024—8035. Curran Associates, Inc., 2019.

KRAHN ET AL.: QP-SBGD 15

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

[53]

[54]

Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary
neural networks: A survey. Pattern Recognition, 105, 2020. ISSN 00313203. doi: 10.1016/j.
patcog.2020.107281. arXiv: 2004.03333.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pages 525-542. Springer, 2016.

Michele Sasdelli and Tat-Jun Chin. Quantum annealing formulation for binary neural networks. In
2021 Digital Image Computing: Techniques and Applications (DICTA), pages 1-10. IEEE, 2021.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum neural network.
Quantum Information Processing, 13(11):2567-2586, 2014.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. An introduction to quantum machine
learning. Contemporary Physics, 56(2):172-185, 2015.

Marcel Seelbach Benkner, Vladislav Golyanik, Christian Theobalt, and Michael Moeller. Adiabatic
quantum graph matching with permutation matrix constraints. In International Conference on 3D
Vision (3DV), 2020.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017.

Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, Xiangjian He, Yiguang Lin, and Xuemin Lin.
Binarized graph neural network. World Wide Web, 24:825-848, 2021.

Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang, and Yuanfang Guo. Bi-gcn: Binary graph
convolutional network. In CVPR, pages 1561-1570, 2021.

Shaopeng Wei and Yu Zhao. Graph learning: A comprehensive survey and future directions. arXiv
preprint arXiv:2212.08966, 2022.

Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep learning. arXiv preprint
arXiv:1412.3489, 2014.

Peter Wittek. Quantum machine learning: what quantum computing means to data mining.
Academic Press, 2014.

Kai-Lang Yao and Wu-Jun Li. Full-precision free binary graph neural networks, 2022.

Chunyu Yuan and Sos S Agaian. A comprehensive review of binary neural network. arXiv preprint
arXiv:2110.06804, 2021.

Alp Yurtsever, Tolga Birdal, and Vladislav Golyanik. Q-fw: A hybrid classical-quantum frank-wolfe
for quadratic binary optimization. arXiv preprint arXiv:2203.12633, 2022.

Jan-Nico Zaech, Alexander Liniger, Martin Danelljan, Dengxin Dai, and Luc Van Gool. Adiabatic
quantum computing for multi object tracking. In CVPR, 2022.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lg-nets: Learned quantization
for highly accurate and compact deep neural networks. In ECCV, pages 365-382, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, and Jian Cheng.
A2q: Aggregation-aware quantization for graph neural networks. arXiv preprint arXiv:2302.00193,
2023.

