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Introduction

Setup:
1) Training BNNs is an NP-hard combinatorial prob-

lem
typical optimiser don’t work well on BNNs

2) Using Quantum Annealer to solve this problem
QA’s have the capabilities to solve NP-hard
problems

3) Development of an hybrid optimiser
hybrid algorithms allow for better scalability
has current quantum hardware just can solve
small problems
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Figure 1. Training Binary Neural Networks with a QA layer by layer

Contributions

1) We propose QP-SBGD, a novel, stochastic optimiser tailored for training binary neural networks utilizing
real quantum hardware.

2) We prove that our algorithm converges to a fixed point in the binary parameter space under the assumption
of the existence of such a point

3) We show an equivalence of our binary projection to a specific QUBO problem, allowing us to implement our
algorithm on quantum hardware.

Quantum Binary Map

We define �U : Rm æ {±1}n to be the map

�U(v) := arg min
gœ{≠1,1}n

mX

i=1
||vi ≠ g€ui||22. (1)

The binary map �U(v) in Eq (1) admits the following Ising Model or quadratic unconstrained binary optimisation
(QUBO) form:

�U(v) = arg min
gœ{≠1,1}n

g€
mX

i=1
Qig + s€g (2)

where

s = ≠2
mX

i=1
viut

i, Qi = ut
iut

i
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mX
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Binary Gradient Approximasation

Let f : Rn æ Rm be a differentiable function, y the output (prediction) and ŷ the target and E(y, ŷ) œ R a loss
function. We also write: Ef (x) for E(y, ŷ).

y = f (x), Zt ¥ ÒyEf (3)

When we replace the general matrix U by a normalized gradient w.r.t. y, namely Zt and use Ò̃yEf (x) as an
input our map satisfies the following:

�̂Zt(Ò̃yEf (x)) = arg min
bœRn

ÎÒ̃xEf (x)|xt ≠ bÎ2
2. (4)

However, our original operator � projects onto the binary numbers and not the reals. This non-convex map only
approximates �̂. Hence, we write:

�Zt(Ò̃yEf |xt) ¥ arg min
bœ{≠1,1}n

ÎÒ̃xEf |xt ≠ bÎ2
2. (5)

Binary Update Rule

We now devise a projected variant of SBGD with the distinction that we evaluate the gradients on the variables
restricted to {±1}n:

x̂t = sign(xt)
xt+1 = xt ≠ –t�Zt(eÒyEf

⇣
x̂t
⌘

). (6)

We guarantee convergence to a fixed point, if such a point exits.

Algorithm

Require: Training data D = {(xi, ŷi)}D
i=1, batch size B, learning rate –, real initial weights {�¸}L≠1

¸=0
1: for t œ [1, . . . , T ] do
2: {W¸}L

¸=1 Ω sign(�¸)
3: Sample a batch index set B µ {1, . . . , D}.
4: yB Ω Feedforward pass of xB.
5: {ṙ¸

i,B}L
¸=1 Ω Compute intermediate gradients for training data

6: for ¸ = 1, . . . , L do
7: Ẇ¸ Ω [�Zt,¸

B,i
(ṙ¸

i,B)]mi=1 By solving the QUBO defined in Eq (2)

8: �¸ Ω �¸ ≠ –Ẇ¸

9: end for
10: end for

We train binary neural networks in a layerwise manner. We start with a forward pass and backpropagation. Then
when updating the weights with a quantum annealer / simulated annealer we calculate the binarised weight updates.

Binary Neural Networks - UCI Adult

Figure 2. Training accuracy on a subset of the UCI Adult
dataset for binary classification.

Figure 3. Training loss on a subset of the UCI Adult dataset
for binary classification.

Binary Neural Networks - MNIST Numbers

ProxQuant BC BC QP-SBGD QP-SBGD
SGD signSGD (Gurobi) (D-Wave)

0/2 0.65 0.64 0.71 0.66 0.62
1/2 0.67 0.72 0.66 0.73 0.70
1/7 0.64 0.74 0.68 0.75 0.74

Table 1. The accuracy of binary classification on MNIST. The first column contains the digits used in the experiment. We train simple
MLPs on 500 training samples and 3000 test samples

Binary Graph Neural Networks

Figure 4. Graph classification: We report mean test accuracy over five runs for Karate club [3] (left), Cora [1] (middle) and Pubmed [2]
(right) datasets. of binary GCNs in the node classification task

QUBO evolution over time

Figure 5. Evolution of the QCBO formulation to calculate the weight updates for the first layer with the Quantum Projected Stochastic
Binary-Gradient Descent algorithm.

Hamiltonian Analysis

(a) N¸ = 1 neuron (b) Close-up of (a) (c) N¸ = 2 neurons (d) Close-up of (c)

Figure 6. The eigenvalues of the Hamiltonian of the QUBO in Eq (2) while training a binary MLP on the adult dataset. Those
eigenvalues are plotted as a function of annealing time (t/T ) for a linear layer with one to four neurons and batch size 1. The red bar
represents the eigenvalue gap between the ground level and the first excited level that does not evolve into the ground state.
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