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MoManifold: Learning to Measure 3D Human
Motion via Decoupled Joint Acceleration
Manifolds

Technical Appendix

Outline

Here we provide details, extended experiments and ablation studies omitted from the main
paper for brevity. App. A provides implementation details, App. B gives the experimental
evaluation details, App. C presents more experiments of our motion prior, App. D contains
our ablation studies and App. E provides some extended discussions. We encourage the
reader to view the supplementary video for more qualitative results.

A Implementation Details

A.1 Weighted Design

Here, we introduce the weighted design of Eq. (3) in the main paper, where w; is determined
by the summation of bone lengths from joint i to the root joint along the kinematic structure
of the SMPL body model. For joint i, the summation of bone lengths /; is,

=Y b, (1)
where b is the bone length. Thus, through experimental exploration, w; is defined as:
41?
Ay
This design ensures that joints with intenser movements contribute proportionally more to
the unsigned distance field of motion segment m.

2

wi

A.2 Data Preparation

Training Data. The training data is divided into two categories: plausible motion data
and noisy motion data. We use the train split of AMASS dataset [15] as the plausible mo-
tion data, i.e., the zero level of plausible acceleration vectors manifolds. We downsample
AMASS to 25Hz or 24Hz because it records human motion at 100Hz or 120Hz. This will
ensure that the temporal gap of consecutive frames between the two frequency motion data is
closest and it can be easily generalized to higher frequencies e.g., 30Hz. Then, we randomly
sample motion segments of fixed lengths to model the manifolds.
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For the noisy motion data, which lies outside the manifold, we utilize artificially noised
motion data and the results from a representative SMPL-based human pose estimator VIBE [10].
We apply the noise from a uniform distribution, rather than Gaussian noise, to create artifi-
cially noised motion data of AMASS training set. Because it will produce a more diverse
and wider distribution of noisy motion. Specifically, for a motion segment of length y, we
randomly select x (x < y) frames for adding noise, where x is also randomly generated.
Furthermore, after employing manually noised motion data for training, we performed fine-
tuning using the results from the human pose estimator VIBE on videos of MPI-INF-3DHP
dataset [16]. Due to self-occlusion and partial observations, the estimates output by exist-
ing estimators encompass a substantial amount of noisy motion that is hard to be replicated
through artificial noise. Additionally, such noisy motion is closer to the manifold, which
will help learn a more refined manifold surface. Notably, we do not use any ground truth
annotations from the MPI-INF-3DHP dataset.

We employ KNN algorithm [2] to compute the ground truth distance values of acceler-
ation vectors outside the manifold. We implement KNN using FAISS [7]. Specifically, for
an acceleration vector, we calculate the top-k nearest distances to the zero level and then
compute the average distance as the ground truth distance. In our setup, we use k = 5.
Evaluation Data. For the motion denoising experiments in Sec. 4.2, we utilize two real
world mocap data HPS [5] and the test split of AMASS [15]. HPS records human motion
at 30Hz, thus we do not perform downsampling and directly conduct the evaluation on the
motion of 30Hz. However, for the AMASS dataset, which records human motion at 100Hz
or 120Hz, we downsample it to 25Hz or 24Hz for the evaluation. For HPS dataset, we
randomly sampled 150 motion sequences for each setup. And in the experiments of AMASS
dataset, we randomly selected 100 motion sequences for 60 frames or 120 frames. However,
for the 240 frames of AMASS, due to downsampling requirements, we could only randomly
sample 71 motion sequences for evaluation. Then, following Pose-NDF [20], we introduce
random noise to each frame to create noisy observations.

In the fitting to partial experiments of Sec. 4.3, we use the test split of AMASS for evalu-
ation, which is also downsampled to 25Hz or 24Hz. We also randomly selected 100 motion
sequences for 60 frames or 120 frames. To simulate occlusion, we randomly select one-third
of the frames within a motion sequence and set the rotations of corresponding occluded joints
to zero. Besides, during optimization, when calculating the observation alignment term i.e.,
Eq. (12) in main paper, the occluded joints of occluded frames are excluded.

A.3 Optimization Details

Since our motion prior is built upon motion segments, for an entire motion sequence, we ini-
tially split it into distinct motion segments by employing a sliding window with the window
size equal to the length of our prior and the stride of 1. This will avoid boundary effects and
make any motion segment comply with human motion dynamics. Subsequently, we calcu-
late the distance of each motion segment to the plausible motion manifold, and then utilize
the average distance of these motion segments to guide the optimization process. For the ex-
periments of motion denoising and fitting to partial observations, the optimization variable
in Adam [9] is the entire motion sequence. Specially, for post-optimization of human pose
estimators and motion in-betweening, as we only use our motion prior without any other
optimization objectives, we optimize each motion segment individually, recording multiple
results of each frame to obtain the final optimized poses with a weighted average strategy
similar to SmoothNet. It will increase the receptive field of each frame during optimization.


Citation
Citation
{Kocabas, Athanasiou, and Black} 2020

Citation
Citation
{Mehta, Rhodin, Casas, Fua, Sotnychenko, Xu, and Theobalt} 2017

Citation
Citation
{Cover and Hart} 1967

Citation
Citation
{Johnson, Douze, and J{é}gou} 2019

Citation
Citation
{Guzov, Mir, Sattler, and Pons-Moll} 2021

Citation
Citation
{Mahmood, Ghorbani, Troje, Pons-Moll, and Black} 2019

Citation
Citation
{Tiwari, Antic, Lenssen, Sarafianos, Tung, and Pons-Moll} 2022

Citation
Citation
{Kingma and Ba} 2014


DANG ET AL.: MOMANIFOLD 3

B Experimental Evaluation Details

B.1 Datasets

We evaluate our motion prior on five datasets including AMASS [15], HPS [5], 3DPW [22],
AIST++ [13] and LAFANI [6].

AMASS is a large motion capture database containing diverse motion and body shapes
on the SMPL body model. We sub-sample the dataset to 25Hz or 24Hz and use the recom-
mended training split to train the unsigned distance fields. For the evaluation data, we also
perform the same downsampling on the test split of AMASS.

HPS is a method to recover the full 3D pose of a human registered with a 3D scan of
the surrounding environment using wearable sensors. And with this method, HPS recorded
several large 3D scenes (300-1000 sq.m) consisting of 7 subjects and more than 3 hours of
diverse motion.

3DPW is a challenging in-the-wild dataset consisting of 60 videos, which are captured
by a phone at 30 FPS. Moreover, IMU sensors are utilized to obtain the near ground-truth
SMPL parameters, i.e., pose and shape.

AIST++ is a challenging dataset that comes from the AIST Dance Video DB [21]. It
contains 1,408 sequences of 3D human dance motion, represented as joint rotations along
with root trajectories.

LAFANT is a high-quality public motion capture dataset. It contains 15 actions per-
formed by 5 actors such as walking, dancing, fighting, jumping, with 496,672 frames cap-
tured in a production-grade motion capture system at 30Hz. We adopt the same test set
in [18], which contains 2,232 clips sampled with a window of 65, offset by 40 frames on
Subject 5. Although this dataset is not based on SMPL, its human skeleton definition is com-
pletely consistent with SMPL and joint rotations are provided, so the poses of this dataset
can be converted into SMPL poses. In addition, since the rest-pose of this dataset is not
T-Pose, the relative rotations of the joints in the dataset cannot be directly converted to those
of SMPL, so we first converted the dataset so that all joint rotations are all relative to T-Pose.

B.2 Evaluation Metrics

For the evaluation, five standard metrics are used, including MPJPE, PA-MPJPE, PVE, and
Accel.

MPIJPE (Mean Per Joint Position Error) is calculated as the mean of the Euclidean dis-
tance between the ground-truth and the estimated 3D joint positions after aligning the pelvis
joint on the ground truth location. MPJPE comprehensively evaluates the predicted poses
and shapes, including the global orientations.

PA-MPIJPE (Procrustes-Aligned Mean Per Joint Position Error) performs Procrustes align-
ment before computing MPJPE, which mainly measures the articulated poses, eliminating
the differences in scale and global orientation.

PVE (Mean Per Vertex Position Error) is calculated as the mean of the Euclidean distance
between the ground truth and the estimated 3D human mesh vertices (output by the SMPL
model).

Accel (Mean Per Joint Acceleration Error) is measured as the mean difference between
the ground-truth and the estimated 3D acceleration for every joint. It is used to express
the smoothness and temporal coherence of 3D human motion as well as the similarity to
ground-truth motion.
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Figure S1: SMPL Body Segmentation. Figure S2: SMPL Body Segmentation.
The white box contains the segmentation of ~ The white box contains the segmentation of
legs, feet and toe-bases. legs, feet and toe-bases.

NPSS (The Normalized Power Spectrum Similarity) proposed by [3], evaluates angu-
lar differences between predicted motion and ground truth on the frequency domain. NPSS
measures similarity of motion patterns, which reportedly correlates better with human per-
ception of quality.

B.3 PVE of Legs and Feet

In Table 5 of the main paper, we employ the PVE (Per Vertex Error) of legs and feet to
numerically demonstrate that our method avoids resulting in footskate when smoothing the
motion, compared with SmoothNet [23]. As shown in Figure S1, we segment the human
body mesh into different parts through the indices of mesh vertices provided by [14] and
then compute the PVE for the vertices belonging to the legs, feet and toe-bases (in mm).

B.4 Optimization Space of Rotation

For fair comparison, in Sec. 4.2 and Sec. 4.3, we optimize the human poses in the axis-
angle space same with Pose-NDF [20], and in Sec. 4.4, we adopt the space of 6D rotation
representation [24] following SmoothNet [23]. Moreover, we have observed that optimizing
human poses in the 6D space is more stable and leads to better convergence in some cases
compared to the axis-angle space. Therefore, in Sec. 4.5 and Sec. C.5, we optimize the
human poses in the 6D space.

C Extended Experiments

For dynamic motion and better qualitative comparison, we recommend viewing our supple-
mentary video.

C.1 Correlation Analysis

In this section, we will present the intuitive visualization of the positive linear correlations
between the manifold distances and acceleration error across joints. The linear correlation
of the right hand joint are visualized in Figure S2. Moreover, Figure S3 shows the linear
correlations of the other joints. The two joints on the spine and the head joint are missing
here because there are no corresponding joints in the GT skeleton of 3DPW, so acceleration
error cannot be obtained.
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Figure S3: Scatter Plots of Other Joints. Each blue point represents a motion segment.
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Figure S4: VPoser-t Denoising Results.
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C.2 Motion Fitting from 3D Observations

VPoser-t [17] embeds human poses into a biased Gaussian space of VAE-based represen-
tations and optimizes poses within the latent space, resulting in average poses. When these
average poses are assembled into motion, the resulting sequences appear stiff and mechanical
as shown in Figure S4.
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Figure S6: Motion Range Comparison. Due
to constraints imposed by the traditional tempo-
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Figure S7: Denoising Comparison. Body parts that are significantly different from the
ground truth are marked in colored boxes. The results of VPoser-t are same with Figure S4.
For uniform motion of Pose-NDF, the legs begin to retract in the first frame, whereas at that
time, the human should stand on the ground. Besides, the right arm and shoulders in the last
two frames are obviously different from the ground truth. Since this is the beginning of the
motion, there is no accumulation of errors for HuMoR. And our results are the closest to the
ground truth.

HuMoR [19] could also recover realistic motion in some cases, but due to modeling of
transitions between only two consecutive frames, there might be an accumulation of errors
leading to extreme unrealistic poses (as shown in Figure S5) in the final few frames of the
motion, which has also been demonstrated in [20].

Pose-NDF [20] employs a traditional temporal regularization term to smooth motion, but
this tends to cause the uniform motion. Because the optimization direction of such tempo-
ral terms aims to minimize the frame-to-frame differences, effectively freezing the motion.
Hence, the motion generated by Pose-NDF exhibits minimal variation in velocity, which will
result in a lack of dynamism, particularly in actions that involve distinct changes in speed,
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Time axis

Figure S8: Post-optimization for Human Pose Estimator VIBE. This figure displays a
motion sequence of five consecutive frames. The bottom row shows the enlarged images of
the arms. We can see that VIBE produced a sudden jitter of the right arm, while through our
optimization, we can mitigate the jitter issues.

RN RREEEREERID
BN IRREEEEERID

Figure S9: Qualitative Comparison with Bézier Interpolation. Frames 0 to 5 and frame
15 in the blue boxes are the conditional poses.

Bézier
Interpolation

Optimized
Motion

such as pushing movements. Furthermore, the range of motion will also be restricted, as
depicted in Figure S6.

In Figure S7, we present the initial five frames of the side hopping motion, and the results
of our method are closest to ground truth since we can well preserve the human motion
dynamics. We suggest watching our supplementary video for more qualitative results.

C.3 Mitigating Jitters for SMPL-based Pose Estimators

MoManifold learns an unsigned distance field of plausible motion and explicitly quantifies
human motion dynamics into a score (i.e., distance) which can guide the optimization pro-
cess. Therefore, our motion prior can be utilized to mitigate jitter issues produced by existing
human pose estimators because the motion with jitter movements must be outside the man-
ifold of plausible motion and has a large distance. In Figure S8, we present a qualitative
comparison with a representative human pose estimator VIBE. For more qualitative results,
please refer to our supplementary video. Besides, as shown in Table S1, the estimation per-
formance often degrades when applying traditional filters (such as one euro) which has been
proven in [23].

C.4 Motion In-betweening Refinement

Moreover, we also evaluate our method with first-order Bézier (linear) interpolation, com-
monly used in animation software. Specifically, we select frames O to 5 and frame 15 as con-
ditional poses which are randomly sampled from AMASS and adopt Bézier interpolation for
initial in-betweening, and then we further optimize it with our motion prior. The results are
shown in Figure S9. We can see that our method captures human motion dynamics better by
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Method SDPW
MPJPE | PA-MPJPE | PVE | Accel |

SPIN [12] 99.29 61.71 113.32 34.95
SPIN w/ one euro 99.53 62.24 113.55 14.23
SPIN w/ S [23] 97.81 61.19 1115 74
SPIN w/ only proposed 97.28 60.79 111.4 8.55
EFT [8] 91.6 55.33 110.17 33.38
EFT w/ one euro 91.82 55.65 110.46 14.17
EFT w/ S [23] 89.57 54.40 107.66 7.89
EFT w/ only proposed 89.48 5391 107.94 9.05
PARE [11] 79.93 48.74 94.07 26.45
PARE w/ one euro 80.46 49.32 94.81 10.52
PARE w/ S [23] 78.68 48.47 925 6.31
PARE w/ only proposed 78.61 47.86 92.72 7.75
VIBE* [10] 84.28 54.93 99.10 23.59
VIBE* w/ one euro 85.89 56.49 100.80 10.87
VIBE* w/ S [23] 83.46 54.83 98.04 7.42
VIBE* w/ only proposed 83.14 54.29 97.87 8.12
TCMR* [1] 88.47 55.70 103.22 7.13
TCMR* w/ one euro 90.18 57.41 104.97 6.74
TCMR* w/ S [23] 88.69 56.61 103.40 6.48
TCMR* w/ only proposed 88.28 55.69 103.02 6.72

Table S1: Mitigating Jitters on 3DPW Dataset. "w/ one euro"” refers to using the traditional
one euro filter for refinement. "w/ S" indicates refinement using SmoothNet. "*" denotes
spatio-temporal backbones.
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Figure S10: Motion Generation. The first row is the randomly initialized chaotic motion.
The second row is the realistic motion we generated, which is the action of closing and
subsequently spreading the hands.

mized

opt

guiding the optimization with manifold distances. Bézier interpolation only considers two
key frames, while our motion prior takes into account the overall motion trend, so that the
right arm still maintains a certain swinging motion before putting it down.

C.5 Motion Generation

Beyond enhancing the motions produced by existing methods, our approach even has a cer-
tain capability of motion generation by converting chaotic sequences into plausible human
motions. We begin by randomly selecting 16 varied poses from the AMASS dataset, form-
ing an initial erratic sequence. We then exclusively apply our motion prior, as defined in
Eq. (8) of the main paper, to this disordered starting point. As illustrated in Figure S10, the
generated motion is seamless and natural.

D Ablation Studies

D.1 Optimal Motion Segment Length

In this section, we perform the ablation study on the experiment of mitigating jitters for hu-
man pose estimators. We aim to find the optimal motion segment length. The length of the
motion segment L determines the capacity of temporal information. Longer motion segments
contain more temporal information, but also raise the modeling difficulty and manifold com-
plexity. We demonstrate the effects on different lengths from 5 to 32 frames in Table S2. We
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Method MPJPE | PA-MPJPE | PVE | Accel |
VIBE 84.28 54.93 99.10 23.59
VIBE w/ M-5 83.35 54.50 98.16 9.17
VIBE w/ M-8 83.17 54.34 97.92 8.30
VIBE w/ M-16 83.15 54.30 97.88 8.18
VIBE w/ M-32 83.32 54.48 98.11 8.44

Table S2: Impact of Motion Segment
Length. We employ MoManifold to opti-
mize the results of VIBE on 3DPW. "M-n"
refers to using an n-frame motion segment
to model the acceleration manifolds.

Method MPJPE | PA-MPJPE | PVE | Accel |
VIBE 84.28 54.93 99.10 23.59
VIBE w/ T 84.59 56.33 99.40 7.50
VIBE w/ M-16 83.15 54.30 97.88 8.18
VIBE w/ F-16 83.07 54.28 97.80 8.01

Table S3: Impact of Different Temporal
Terms. Through fusion, MoManifold can
achieve better performance. "w/ T" denotes
with Traditional and "w/ F-16" means that
we integrate the traditional term with M-16.

Data Noisy HPS Noisy AMASS
# frames 60 120 60 120
VPoser-t [17] 3.05 4.43 5.83 6.55
HuMoR [19] 6.08 12.67 10.28 12.63
Pose-NDF [20] 1.17 1.30 5.03 5.39
Only proposed 0.97 0.98 1.56 1.59

Table S4: Motion Denoising. We compare
PVE in cm. "Only proposed" refers to only
using our motion prior to regularize the mo-
tion without integrating with the traditional

Occ. Arm Occ. Shoulder

Data Occ. Leg
+Hand +Upper Arm
# frames 60 120 60 120 60 120
VPoser-t [17] 8.69 10.77 8.79 10.70 8.74 10.20
HuMoR [19] 9.52 12.70 9.39 13.82 9.02 12.14
Pose-NDF [20] 8.50 9.40 8.66 9.43 8.73 9.47

Only proposed 5.09 533 5.06 5.26 5.19 5.32

Table S5: Fitting to Partial Data. We com-
pare PVE (in cm) on test set of AMASS.
Even without the integration, our results are
still better than other methods in all cases.

temporal term.

chose 5 as the minimum motion segment length because the acceleration vector empirically
should be at least 3 frames. Table S2 shows that as the motion segment length increases, all
four metrics first decrease and then begin to increase. When the motion segment length L is
16, we can obtain the best performance.

D.2 Impact of Different Temporal Terms

In this section, we explore the influence of different temporal terms on the experiment of
mitigating jitters for human pose estimators. In the optimization-based tasks, various similar
temporal regularization terms (e.g., the sum of joint differences or mesh vertex differences
between consecutive frames) are applied to smooth motion. Table S3 shows that, naively
applying the traditional temporal regularization term Eq. (7) to optimize the pose estimator’s
results can indeed reduce acceleration error and mitigate jitter issues. However, it will lower
human pose recognition accuracy, as indicated by MPJPE, PA-MPJPE, and PVE metrics. In
contrast, by only utilizing Eq. (8), our method can not only mitigate jitter issues and smooth
motion but also further enhance the pose recognition accuracy. Furthermore, we can see
that the full optimization function, i.e., an integration of both MoManifold and a traditional
temporal regularization term, will further improve the performance, because it can help jump
out of local optima during the optimization process.

D.3 Only Utilizing Proposed Prior

For the experiments of Sec. 4.2, Sec. 4.3 and Sec. 4.4 in the main paper, we used Eq. (9)
to regularize motion, which integrates our motion prior with a traditional temporal regular-
ization term. Here, we only use the proposed prior (i.e., Eq. (8) in the main paper) in the
experiments to demonstrate that even without the integration, we can still outperform the
existing SOTAs as shown in Table S1, Table S4 and Table S5.

For the experiments of Sec. 4.5 and Sec. C.5, we exclusively apply our motion prior
(without the traditional temporal term) as stated in the main paper.


Citation
Citation
{Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, and Black} 2019

Citation
Citation
{Rempe, Birdal, Hertzmann, Yang, Sridhar, and Guibas} 2021

Citation
Citation
{Tiwari, Antic, Lenssen, Sarafianos, Tung, and Pons-Moll} 2022

Citation
Citation
{Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, and Black} 2019

Citation
Citation
{Rempe, Birdal, Hertzmann, Yang, Sridhar, and Guibas} 2021

Citation
Citation
{Tiwari, Antic, Lenssen, Sarafianos, Tung, and Pons-Moll} 2022


10 DANG ET AL.: MOMANIFOLD

gt distance vs. accel_error pred distance (naive loss) vs. accel_error pred distance (our loss Ea.4) vs. accel error

Figure S11: Ablation on Eq. (4). This is correlation analysis of joint 20, same with Sec. 4.1.
The left one corresponds to gt distances, the middle one corresponds to predicted distances
with naive loss, and the right one corresponds to predicted distances with our loss.

D.4 Ablation on Losses

In this section, we conduct the ablation on the loss of Eq. (4). In Eq. (4), the logarithmic
function changes first steeply and then gently, reducing large enough distances to similar
values. This makes the neural network easier to learn, as it will pay more attention to points
close to the manifold and will not be affected by points far away. In other words, Eq. (4)
performs non-linear scaling for small and large distances. Figure S11 presents an intuitive
comparison, proving that our loss function enables more accurate regression learning (the
right one), whereas using a naive loss leads to inaccurate distance predictions (the middle
one), thereby making it impossible to reflect the positive correlation with acceleration errors
(the left one). For the loss of Eq. (5), [4] has demonstrated it would encourage a smoother
distance field with unit-norm gradient outside the manifold.

E Discussions

E.1 About Joints Decoupling

At first, we tried to treat the human body as a whole and used various architectures, includ-
ing transformers, to model the manifold, but it is hard to learn to map such high-dimensional
input to a continuous distance value since extremely large data is required, which is impracti-
cal. Therefore, we proposed to decouple the joints, reducing the input dimension from 1008
to 42 (taking 16 frames as an example). This makes the data in the low-dimensional space
dense enough to capture the data distribution.

Despite the decoupling, the joints maintain an inherent correlation through the SMPL
model topology and thus reflect human dynamics as a whole. Indeed, this may make it hard
to capture the kinematic relationships between joints on different branches, such as left leg
and right arm. However, this will not cause pose errors when optimizing all joints, since we
can always get the correct human body structure via SMPL model.

E.2 Joints J0-J3 are excluded

JO is pelvis, the root joint, which corresponds to the position in the world coordinate system.
J1 is left hip, J2 is right hip and J3 is spinel. Like previous methods, we set JO fixed to better
capture the changes of human poses in the local coordinate system. So JO is static. J1-J3 are
right next to JO in the articulated skeleton and therefore have very little movement and very
small acceleration, which makes it hard and meaningless to learn distance mapping.
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