
DAS, XU, HUSSAIN, ZHAO, DAS, LIN, BHATTACHARYA: MMPRUNE4U 1

MMPrune4U: Regularizing Multimodal
Feature Distortion in Weight Pruning for
Deep Neural Network Compression

Sudip Das1

sudip.das@valeo.com

Kaixin Xu2

kaixin002@e.ntu.edu.sg

Nushrat Hussain3

hnushrat_t@isical.ac.in

Ziyuan Zhao2

s210088@e.ntu.edu.sg

Arindam Das1,4

arindam.das@valeo.com

Weisi Lin2

wslin@ntu.edu.sg

Ujjwal Bhattacharya3

ujjwal@isical.ac.in

1 DSW, Valeo India
2 Nanyang Technological University,
Singapore

3 Indian Statistical Institute, Kolkata
4 University of Limerick, Ireland

Abstract

Despite the remarkable success of multimodal models in automotive applications,
their practical benefits are often accompanied by a large number of parameters, including
redundant and excessive weights. This poses hurdles to their deployment on embedded
devices due to the substantial computational costs compared to unimodal models. Model
sparsification is among the common solutions to reduce the resources required for com-
putation and increase throughput of the system. Although many recent studies in model
sparsification and pruning achieve remarkable performance for unimodal models, they
overlook capturing the layer-wise sensitivity towards accuracy and behaviors for distinct
modalities in response to the pruning, leading to information loss in the downstream
tasks of the pruned model. We introduce MMPrune4U, a layer-adaptive weight pruning
method explicitly designed to support multimodal 3D scene understanding that incorpo-
rates a regularizer based on log-Sobolev inequality. This approach uncovers a crucial
property related to the distortion of features resulting from pruning weights across mul-
tiple layers while keeping a predefined pruning ratio. As per the changes in the output
distribution of the each layer during pruning compared to unpruned model, we regularize
the distortion through the functional Fisher information. We formulate our layer-adaptive
pruning by considering the layerwise impact to the downstream tasks and optimise the
objective function through combinatorial optimization challenge, which we effectively
address using dynamic programming techniques. The proposed MMPrune4U method
demonstrates superior performance in comparison to the existing state-of-the-art meth-
ods, as shown by experimental results on both nuScenes and SemanticKITTI datasets.
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It may be distributed unchanged freely in print or electronic forms.
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(A) Ground Truth (B) RD Prune (C) MMPrune4U

Figure 1: Proposed pruning method, MMPrune4U, when applied on RPVNet [53] model for
semantic segmentation using semanticKITTI and object detection using nuScenes datasets,
produces comparable predictions with respect to the latest pruning technique RD Prune [54].

1 Introduction

An accurate understanding of visual information from the environment is essential for var-
ious applications, including autonomous driving and robotics [8, 25, 29, 34, 36]. The level
of comprehension directly impacts the effectiveness of subsequent tasks like path planning
and control [10, 21, 52]. To meet the safety standard of autonomous driving systems, it is
typical to employ a combination of sensors [34, 36], including cameras and LiDAR, to en-
hance both reliability and accuracy since LiDAR point cloud provides precise 3D geometric
measurements but lacks color and texture information [5, 61, 62]. On the other hand, camera
images complement these point cloud views by offering comprehensive semantic informa-
tion [5, 22, 38], thus maximizing the utilization of available data. PointPainting [47] merges
semantic information extracted from 2D images with raw LiDAR points. Further, Wang et
al. [49] and Yin et al. [60] have subsequently proposed enhancements to the PointPaint-
ing framework. However, most scene understanding studies considered multimodal models
[9, 11, 32, 37, 45] with a large number of parameters that result in high energy consump-
tion, delayed system output, and pose challenges for deployment on embedded devices with
limited resources. Neural network pruning is a commonly employed approach to reduce the
computation complexity by identifying redundant subset of parameters and thereby aiding
in the reduction of FLOPs (FLoating-point OPerations) [15, 17, 42, 43] and satisfying the
storage requirements [15, 19, 28, 35, 40]. It has been studied as a fundamental technique for
a long time, and in most cases, single-modality has been considered as the default scenario.
Post-train pruning is among such unimodal pruning schemes for models like CNNs, which
prunes weights/parameters from pretrained dense models. Han et al. [18, 19] proposed a
few pioneering works in post-train pruning, adopting magnitude-based iterative pruning for
simple CNNs such as LeNet and AlexNet. Molchanov et al. [42] adopted Taylor-based crite-
rion as a significance score for intra-layer parameter pruning. Methods such as [44, 63] also
leveraged magnitude-based scores, but applied a global threshold for all layers to prune out
low-scored parameters. The pruning techniques in [12, 14] determined the layerwise spar-
sity rate by architectural heuristics. Leet et al. [27] proposed a method to rank magnitude-
based scores with inter-layer constraints. Isik et al. [23] derived output distortion-aware
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layer-wise sparsity ratio from laplacian distribution assumptions of layer weights. Recent
advancements in pruning strategy towards task-agnostic pruning avoids the need for network
re-pruning for each newly considered task. Further, it can be categorized into two parts:
unimodal [6, 7, 41, 55] and multimodal [13] network pruning. These approaches provide
a generic sparse model that can be utilized for various unknown downstream tasks, while
[57] worked on a structural pruning method aiming at reducing the latency of various com-
ponents of the Vision Transformer (ViT). Kichler et al. [24] and Wang et al. [50] explored
a two-step method to retain knowledge in neural networks. Firstly, it prunes the network,
followed by fine-tuning to transfer knowledge from the unpruned model. One limitation of
this approach is the disregard for considering the mutual impact of different layers, which
makes the pruning process less effective and leads to subpar model accuracy. In some studies
involving multimodal networks [1, 39], the pruning method was applied. However, applying
high proportions of pruning ratios resulted in deteriorated accuracy.

We observe a significant discrepancy in the information contained within the features of
each modality, as quantified by Fisher information, between the features of each layer of the
pruned model and those of the unpruned models, resulting in considerable information loss.
Particularly in the setup of multimodal models, the impact of information loss is more ef-
fective in LiDAR point clouds compared to camera images, as LiDAR provides accurate yet
sparse 3D point clouds. During pruning, the information contained in LiDAR features de-
grades more significantly, limiting its contribution to downstream tasks. Conversely, weights
from one modality may contain similar knowledge to that found in another modality. So far,
no similar study has been explored to prune the network through the understanding of the
information contained within the features of each layer relative to the unpruned model.

In this work, we propose a novel regularizer for a jointly optimized layer-adaptive ap-
proach aimed at minimizing the trade-off between FLOPs and accuracy. Specifically, our
single-stage pruning approach, along with a regularization term, effectively preserves in-
formation loss during the pruning of certain modality branches of the multimodal network,
thereby improving the eventual multimodal model performance as shown in Figure 1. The
notable contributions of the present study are summarized as follows,

• We formulate a generic post-train pruning scheme for multimodal 3D scene under-
standing models.

• We present an approach aimed at preventing information loss in the features across
all the layers of the pruned model. This involves leveraging the Logarithmic Sobolev
Inequality to ensure an equivalent consideration of feature information between each
layer of pruned and unpruned model.

• Our extensive evaluation of nuScenes [4] and SemanticKITTI [3] datasets while us-
ing MMPrune4U method achieves state-of-the-art performances with significantly less
number of FLOPs in comparison to the unpruned models.

2 Proposed Approach

2.1 Preliminaries

We targeted pruning learnable parameters for all feature extraction layers in Multimodal 3D
networks. To decide which neurons in a weight tensor need to be pruned, given a layer
sparsity ratio α , we rank them by the absolute value and eliminate the bottom-ranked ones.
Mathematically, we first obtain the neuron score by the Taylor expansion SSS = |WWW | similar

Citation
Citation
{Chen, Frankle, Chang, Liu, Zhang, Wang, and Carbin} 2020

Citation
Citation
{Chen, Frankle, Chang, Liu, Zhang, Carbin, and Wang} 2021

Citation
Citation
{Mallya, Davis, and Lazebnik} 2018

Citation
Citation
{Xu, Luo, Wang, Chang, Huang, Huang, and Huang} 2022

Citation
Citation
{Farina, Mancini, Cunegatti, Liu, Iacca, and Ricci} 2024

Citation
Citation
{Yang, Yin, Shen, Molchanov, Li, and Kautz} 2023{}

Citation
Citation
{Kichler, Afghan, and Naumann} 2023

Citation
Citation
{Wang, Zhao, Liu, Chen, Zhuang, Gu, Guo, and Zhao} 2023

Citation
Citation
{Alaba and Ball} 2024

Citation
Citation
{Lu, Jiang, Liu, Li, Chen, Zhang, and Wan} 2024

Citation
Citation
{Caesar, Bankiti, Lang, Vora, Liong, Xu, Krishnan, Pan, Baldan, and Beijbom} 2020

Citation
Citation
{Behley, Garbade, Milioto, Quenzel, Behnke, Stachniss, and Gall} 2019



4 DAS, XU, HUSSAIN, ZHAO, DAS, LIN, BHATTACHARYA: MMPRUNE4U

to [43]. The above pruning scheme can be formulated as W̃ =WWW ⊙MMMα(SSS), where MMMα(SSS) is
the binary mask generated from the ranking score matrix SSS.

We essentially adopt a layerwise sparsity scheme in [54], which provides a rate-distortion-
based layerwise pruning ratio allocation algorithm to minimize the output distortion. Given
a neural network f , we denote WWW (1:l) =

(
WWW (1), ...,WWW (l)) as all the parameters of f , where

l is the total number of layers in f and WWW (i) is the weights in layer i. When we prune the
parameters in layer i to j, we will obtain a new parameter set for those layers W̃(i: j). The ob-
jective of model pruning on f can be formulated as to minimize the output distortion caused
by pruning f (x,v;WWW (1:l))− f (x,v;W̃(1:l)):

min ∥ f (x,v;WWW (1:l))− f (x,v;W̃(1:l))∥2 s.t.
∥W̃(1:l)∥0

∥WWW (1:l)∥0
≤ R (1)

where R denotes the pruning ratio for the entire network. We exploit the additivity approxi-
mation adopted in [54] to leverage the intractable original problem, which approximates the
output distortion caused by pruning all layers’ weights into the sum of the output distortion
due to individually pruning of each layer:

E
(
∥ f (x,v;W (1:l))− f (x,v;W̃(1:l))∥2

)
=

l

∑
i=1

E(δ d
i ) (2)

where δ d
i denotes the output distortion when only pruning the weights in layer i:

δ
d
i = f (x,v;WWW (1:i−1),W̃(i),WWW (i+1,l))− f (x,v;WWW (1;l)) (3)

2.2 Features Discrepancy-aware Pruning
We devise a pruning framework integrating Logarithmic Sobolev Inequalities [16] to address
information loss issues at different layers of the network during parameter pruning. Our aim
is to utilize the features at different layers from the multimodal trained model f (x;WWW (1:l))

to assess the information loss of features for f (x;W̃(1:l)) as we selectively prune a subset of
parameters through regularizer. The training dataset X comprises LiDAR point cloud data
xk

l and multiview camera images xk
c, with each instance xi consisting of both types of data,

along with their respective ground truth labels yk. We feed the data X (LiDAR point cloud
and Multiview images) into both multimodal models, f (x;WWW (1:l)) and f (x;W̃(1:l)), extracting
multimodal features represented as Ql

t and Ql
p within the probability measure space of each

respective model for the sample distribution x. The uncertainty of the random variables,
measured by H(·) using Cross Entropy, is quantified by comparing the distributions of r(ŷ)
and f (ŷ|x;W̃(1:l)), is:

H(r, f ) =−∑
ŷ

r(ŷ) log f (ŷ|x;W̃(1:l)) (4)

where the function r(ŷ) corresponds to the ground truth. As the optimization progresses,
the network runs the risk of losing information across different layers as a consequence of
parameter pruning. Therefore, approximating a function f (x;W̃(1:l)) with distortion in the
parameters to form a pruned model may result in poor performance under multimodality
scenario.

To address the disparity between f (x;W̃(1:l)) and f (x;WWW (1:l)), we employ Fisher infor-
mation to quantify the degree of distortion in the weights W̃, resulting in information loss
within each input distribution (i.e., xk

l and xk
c), and the formula for the calculation as outlined
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in (7). We utilize the Logarithmic Sobolev method to extract equally significant features
from the model f (x;W̃(1:l)) in comparison to f (x;WWW (1:l)).∫

Rn
∥ f (x,v;W̃(1:l))∥2 log∥ f (x,v;W̃(1:l))∥dux(v)

≤
∫
Rn
∥∇ f (x,v;W̃(1:l))∥2 dux(v)+∥ f (x,v;W̃(1:l))∥2

2 log∥ f (x,v;W̃(1:l))∥2

(5)

here, dux(v) represent probability density function where u denotes the Gaussian measure
on R2 and v is used to represent the stochastic variable. The norm ∥ f (·)∥ is defined in the
Hilbert space L2. Precisely,

dux(v) =
1√

(2π)n det(Σ)
exp

(
−1

2
(∥x∥2/2)

)
dx (6)

We derive the following equation under the condition that the function f (x,v;W̃(1:l))≥ 0,∫
Rn

f (x,v;W̃(1:l)) log f (x,v;W̃(1:l))dux(v)

−
∫
Rn

f (x,v;W̃(1:l))dux(v) log
(∫

Rn
f (x,v;W̃(1:l))dux(v)

)
≤ 1

2

∫
Rn

f (x,v;W̃(1:l))
∥∇ f (x,v;W̃(1:l))∥2

f (x,v;W̃(1:l))
dux(v)

(7)

The above equation says that the function of entropy remains non-negative owing to
the non-negativity inherent in the Fisher information formulation. Additionally, it bounds
the functional entropy E( f (x,v;W̃(1:l))) utilizing the Fisher information method through the
logarithmic Sobolev inequality. It is expressed as follows,

E( f (x,v;W̃(1:l)))∼=
∫
Rn

f (x,v;W̃(1:l)) log f (x,v;W̃(1:l))dux(v)

−
∫
Rn

f (x,v;W̃(1:l))dux(v) log
(∫

Rn
f (x,v;W̃(1:l))dux(v)

) (8)

where
∫
Rn f (x,v;W̃(1:l)) log f (x,v;W̃(1:l))dux(v) represent the entropy. This expression quan-

tifies the information content associated with the distribution f (x,v;W̃(1:l)) and the distor-
tion with respect to the probability measure dux(v) on R2. Essentially, it calculates the
extent to which the distribution of f (x,v;W̃(1:l)) encapsulates information within itself.∫
Rn f (x,v;W̃(1:l))dux(v) log

(∫
Rn f (x,v;W̃(1:l))dux(v)

)
refers to expectation of f (x,v;W̃(1:l))

under the Gaussian measure dux(v) over entire space and it captures the uncertainty which
reflects deviation of the function f (x,v;W̃(1:l)) around its average value and accounts for the
spread of f (x,v;W̃(1:l)) with respect to the Gaussian measure.

At various layers, in the pursuit of maximizing the information within the latent space for
f (x;W̃(1:l)), we define ,uX

p and ,uX
t as measures corresponding to the distributions f (x;W̃(1:l))

and f (x;WWW (1:l)), respectively. We define two variables - m and v for representing the mean
(µ), and variance (σ2). Throughout optimization, uX

t and ,uX
p follow Gaussian distributions,

characterized as ,uX
t ∼ N (mX t

,vX t
) and ,uX

p ∼ N (mX p
,vX p

). Here, we denote (mX t
, mX p

)
and (vt

X , vp
X ) as mean and variance of the measures of the pruned and unpruned model. The

product measure across distributions in (7) is expressed as uX = uX
t ⊗ uX

p .
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Algorithm 1 MMPrune4U Algorithm
Input: Training dataset Dt(X), Calibration dataset Dc(X), model f with l layers, Number

of possible pruning ratios for each layer K, Fine-tuning epochs E.

Output: The pruned model f (·;W̃WW
(1:l)

).
Inference F on Dc(X) to get output: Y←{ f (x,v;WWW (1:l)) | ∀X ∈ Dc(X)}.
for i from 1 to l do

for k from 1 to K do
Calculate δi,k following Eqn. 11.

end for
end for
Obtain layerwise pruning ratios α∗i using δi,k from Eqn. 12.
for i from 1 to l do

Prune WWW (i) given α∗i : W̃WW
(i)
←WWW (i)⊙MMMα∗i

(SSS).
end for
for e from 1 to E do

Finetune f (·;W̃WW
(1:l)

) on Dt(X).
end for

We consider a function SX (·) in Eqn. (9) to calculate the sensitivity of the function,
f (x;W̃(1:l)), for the neural architecture to the Gaussian measures uX

t and uX
p . Specifically, It

helps to quantify the changes in the Gaussian measures that affect the f (x;W̃(1:l)).

SX (x, uX
t ; uX

p ;W̃(1:l)) = H( f p(uX
t ; uX

p ;W̃(1:l)), f p(x;W̃(1:l))) (9)

Hence, we substitute the sensitivity function in Eqn. (7) with the following regulariza-
tion,

λ
regu = max

SX (x,uX
t ;uX

p ;W̃(1:l))

[
1
2

∫
Rn

∥∇SX (x, uX
t ; uX

p ;W̃(1:l))∥2

SX (x, uX
t ; uX

p ;W̃(1:l))
dux(v)

]
(10)

The gradient energy plays a pivotal role by penalizing with large gradients in f (x;W̃(1:l))
and encourages to extract equivalent information with respect to a reference model as it is
denoted to f (x;WWW (1:l)).
2.3 Final Objectives
From Eqn. 10, We find that the original optimization problem can still be reformulated into a
combinatorial problem related to layerwise operands, by amending the Eqn. 3 with the λregu
of i-th layer denoted as λ i

regu. The final layerwise objective is as follows,

δi = δ
d
i +λ

regu
i (11)

Therefore, we apply the dynamic programming solver as introduced in [54] to finally solve
for layerwise pruning ratio allocation for multimodal models:

{α∗i ,∀0≤ i≤ l}= dp_solver({(αi,k,δi,k),∀0≤ i≤ l,0≤ k ≤ K}) (12)

where K indicates the number of possible discrete pruning rate selections configured as a
global constant for all layers, and l is the total number of layers. Algo. 1 shows the holis-
tic pipeline for the proposed pruning scheme, where the calibration set Dc(X) ⊂ Dt(X) is
randomly sampled from the training set.
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3 Experimentation Details
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Figure 2: Fisher information values proportions throughout the training phase for both
(a) BEVfusion [34] and (b) RPVNet [53] models, carried out using the nuScenes [4] Se-
manticKITTI [3] datasets.

Modality Dataset Model Unpruned
LAMP

[43]
ProsPrune

[2]
RD Prune

[54] MMPrune4U Sparsity

L+C

N(T) MSeg3D [30] 73.3 60.09 66.92 70.18 74.89

75%

S(V) 72.9 61.28 65.96 70.63 74.37
N(V) PMF [64] 76.9 62.12 69.47 72.97 78.82
S(V) 63.9 50.37 57.73 60.73 65.56

L+R

N(V) CPGNet [31] 76.9 66.68 69.53 74.72 80.11
S(T) 68.3 60.49 64.56 65.56 71.13
S(T) RVPNet [53] 70.3 58.97 65.66 68.34 73.09
N(V) 77.6 65.22 73.08 74.97 79.93

L+C

N(T) MSeg3D [30] 73.3 46.12 55.04 66.86 71.92

83%

S(V) 72.9 48.96 56.08 68.38 71.87
N(V) PMF [64] 76.9 61.53 61.53 72.59 75.64
S(V) 63.9 41.53 48.71 59.77 62.58
S(T) PointPainting [47] 69.86 43.6 53.49 63.44 68.29

L+R

N(V) CPGNet [31] 76.9 58.67 66.42 69.04 75.34
S(T) 68.3 50.45 58.57 61.91 66.56
N(V) RVPNet [53] 77.6 68.0 69.18 70.32 76.12
S(T) 70.3 53.11 61.93 63.28 68.99

Table 1: Comparison of different pruning strategy vs. MMPrune4U with several segmenta-
tion models using multimodal inputs (L+C or L+R) evaluated on nuScenes [4] [validation
set “N(V)”, test set “N(T)”] and SemanticKITTI [3] [validation set “S(V)”, test set “S(T)”]
respectively.

3.1 Results
We have considered models and pruning methods for experimentation, all of which have
available source code. Figure 2 shows that the proposed regularizer is able to preserve more
relevant features measured by Fisher information while comparing with the baseline model
without the regularizer. Apparently it also helps to improve the test accuracy (marked by
green) evidenced using RPVNet [53] and BEVFusion [34] models experimented on Se-
manticKITTI [3] and nuScenes [4] datasets respectively.

Table 1 shows the performance of different segmentation models measured using IoU
metric and evaluated on the nuScenes dataset, with results reported for the test set “N(T)”
and validation set “N(V)”, as well as on the SemanticKITTI dataset, with results reported for
the test set “S(T)” and validation set “S(V)“. It is evident that the MMPrune4U method con-
sistently outperforms various state-of-the-art methods, including the recent RD Prune [54]
approach across two different combinations of sensor modalities - LiDAR+Camera (L+C)
and LiDAR+Range (L+R). This observation persists even as sparsity increases from 75% to
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83%. Table 2 demonstrates the effectiveness of the proposed pruning approach over existing
methods for the detection task using LiDAR+Camera (L+C) multimodal inputs evaluated
on nuScenes test set (marked as “N(T)”). The enhancement achieved by MMPrune4U over
existing state-of-the-art methods is considerable, and this pattern remains steadfast across
various levels of sparsity during pruning. As presented in Table 3, our extensive experimen-
tation includes 3D object detection with the recent BEVFusion model [34] using two dif-
ferent backbones - SwinT[33]+Voxelnet[62] and Res101[20]+P.Pillar[26] respectively. The
results indicate the superiority of the proposed pruning technique among other approaches
in different pruning sparsity.

Model Unpruned
LAMP

[43]
ProsPrune

[2]
RD Prune

[54] MMPrune4U Sparsity

BEVFusion [34] 71.3 53.01 62.04 67.53 72.23
PointPainting [47] 46.6 29.7 38.42 40.24 47.33

DeepInteraction [58] 70.8 50.1 61.63 62.43 69.92 77%
PointAugmenting [49] 68.8 49.5 57.97 59.82 69.56

BEVFusion [34] 71.3 42.16 53.82 62.23 71.23
PointPainting [47] 46.6 13.62 27.41 35.92 45.13 83%

DeepInteraction [58] 70.8 33.1 49.17 61.32 69.77
PointAugmenting [49] 68.8 32.43 44.87 57.02 66.62

Table 2: MMPrune4U vs. existing pruning techniques for object detection models using
multimodal inputs (L+C) evaluated on nuScenes test set [4].

Backbones SwinT [33]+Voxelnet[62] Res101[20]+P.Pillar[26]

Sparsity 77.5% 89.8% 76.6% 87.7%

Metrics mAP NDS mAP NDS mAP NDS mAP NDS

Unpruned [34] 68.5 71.4 68.5 71.4 53.6 60.6 53.6 60.6
Iterative [18] 60.1 61.9 39.7 40.1 50.1 56.7 42.9 48.5
SynFlow [46] 63.2 65.7 46.3 48.0 50.8 57.4 44.4 50.6
GraSP [48] 63.3 65.9 47.9 49.6 51.1 58.0 44.7 50.7
ProsPr [2] 64.5 67.8 56.4 57.6 51.4 57.9 45.7 51.7

CrossPrune [39] 66.9 69.5 61.8 64.2 52.3 59.3 49.0 55.5
MMPrune4U 69.18 72.23 67.41 69.87 53.9 61.29 50.0 56.41

Table 3: Comparative analysis of BEVFusion models for 3D object detection assessed on
nuScenes validation dataset [4] measured using mAP and NDS.

Modality Model Unpruned
LAMP

[43]
ProsPrune

[2]
RD Prune

[54] MMPrune4U Sparsity

C BevFormerV2 [56] 41.2 15.38 27.1 34.89 40.97

70%DETR3D [51] 55.6 34.5 43.9 49.93 54.9

L PointPillar [47] 65.5 36.6 48.54 59.74 64.22
CenterPoint [59] 60.3 30.92 42.98 53.44 58.86

C BevFormerV2 [56] 41.2 22.84 29.07 36.62 42.23

62%DETR3D [51] 55.6 41.73 44.22 51.93 56.79

L PointPillar [47] 65.5 48.23 50.94 61.91 66.48
CenterPoint [59] 60.3 40.92 43.67 55.47 61.22

Table 4: Effectiveness of MMPrune4U with different sparsity in pruning unimodal model
for object detection with solely LiDAR or camera models assessed on nuScenes test set [4].
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Figure 3: Different pruning methods to reduce the parameters of RVPNet [53] (left) and
BEVfusion [34] (right) models.
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Figure 4: Layerwise Fisher information of RVPNet [53].

The proposed pruning technique can be adapted to accommodate unimodal input as well.
Table 4 showcases the substantial margin of improvement achieved when utilizing solely
LiDAR or Camera input with the recent BEV models, evidenced in two different pruning
sparsity for both modalities separately.

Figure 1 provides a visual comparison between RD Prune [54] and MMPrune4U with re-
spect to ground truth. The top and bottom rows display BEV semantic segmentation and ob-
ject detection inferences, respectively. In terms of segmentation performance, MMPrune4U
accurately preserves predictions of buildings (marked by yellow) that are false negatives
by RD Prune. With respect to the detection task, two pedestrians (marked by blue) are
missed by RD Prune but correctly preserved by the proposed pruning technique. Gener-
ally, MMPrune4U exhibits reduced susceptibility to generating false positives. One of the
main aspects of pruning is to achieve comparable performance with fewer FLOPs. Figure
3 shows the Pareto-frontier of test accuracy vs. FLOPs while using various state-of-the-
art pruning techniques including MMPrune4U on RVPNet [53] (left) using SemanticKITTI
[3] and BEVfusion [34] (right) model using nuScenes [4] datasets. The frontier line at left
shows that the proposed pruning method achieves the same performance remarkably with
only 17% of the FLOPs of the unpruned model. For the other pattern, with just 23% FLOPs
of the unpruned model, MMPrune4U can match the same performance. Notably, even with
17% of the FLOPs, the proposed pruning method delivers competitive performance com-
pared to the unpruned model, and the highest performance, surpassing even the unpruned
model, is achieved with only 29% of the FLOPs.

In network pruning, it is essential to verify if the layers in the pruned model can provide
comparable information. We calculate the Fisher information for each layer in the unpruned
model (RVPNet [53]) and compare it with two pruned models: one generated using the latest
RD Prune [54] method and another employing MMPrune4U. Figure 4 presents a detailed
analysis in which MMPrune4U demonstrates information levels that are nearly on par with
the reference model across layers, surpassing the RD Prune method by a significant margin.
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4 Conclusion

While deep learning models excel in automotive applications, their excessive parameters hin-
der their deployment on embedded devices due to computational constraints. In this work,
we introduce a novel regularizer based on the log-Sobolev inequality, integrating the prop-
erties of functional Fisher information and functional entropy to minimize feature distortion
during pruning across layers. By considering layer-wise sensitivity and optimizing with
dynamic programming, our approach outperforms existing methods, as validated through
extensive experiments using different pruning methods applied on various state-of-the-art
models with multiple pruning sparsity in both multimodal and unimodal setup on complex
automotive datasets. Our ablation study underscores the effectiveness of the proposed reg-
ularizer in mitigating feature distortions present in the pruned network. In future study, we
plan to address the issue of modality imbalance in the context of multimodal network prun-
ing.
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