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Abstract

While originally designed for image generation, diffusion models have recently shown
to provide excellent pretrained feature representations for semantic segmentation. In-
trigued by this result, we set out to explore how well diffusion-pretrained representations
generalize to new domains, a crucial ability for any representation. We find that diffusion-
pretraining achieves extraordinary domain generalization results for semantic segmenta-
tion, outperforming both supervised and self-supervised backbone networks. Motivated
by this, we investigate how to utilize the model’s unique ability of taking an input prompt,
in order to further enhance its cross-domain performance. We introduce a scene prompt
and a prompt randomization strategy to help further disentangle the domain-invariant
information when training the segmentation head. Moreover, we propose a simple but
highly effective approach for test-time domain adaptation, based on learning a scene
prompt on the target domain in an unsupervised manner. Extensive experiments on four
synthetic-to-real and clear-to-adverse weather benchmarks demonstrate the effectiveness
of our approaches. Without resorting to any complex techniques, such as image translation,
augmentation, or rare-class sampling, we set a new state-of-the-art on all benchmarks.

1 Introduction
Deep neural networks for semantic segmentation have achieved remarkable performance
when trained and tested on the data from the same distribution [1, 26, 51, 55]. However, their
ability to generalize to new and diverse data remains limited [45, 47, 49, 65]. Deep semantic
segmentation models are sensitive to domain shifts, which occurs when the distribution of the
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Figure 1: Standard vs. Diffusion Backbones. (a) In standard backbones, the domain-
invariant (e.g. semantics) and domain-variant (e.g. styles, lighting) information are partially
entangled in the latent visual representations. Consequently, semantic segmentation models
trained on these backbones often suffer from significant performance degradation when
confronted with domain shifts. (b) Conversely, diffusion models naturally learn a more
disentangled representation through text-to-image synthesis pretraining, as it is capable of
generating the same semantic content under diverse styles. When used as a backbone network
for semantic segmentation, it therefore offers a feature representation robust to large domain
shifts, leading to superior generalization capabilities across diverse domains.

testing (target) data differs from that of the training (source) data. This often leads to drastic
performance degradation. To enhance the generalization ability of deep models to unseen
scenarios, domain generalization (DG) methods employ specialized training strategies that
improve the model’s robustness. Alternatively, test-time domain adaptation (TTDA) aims to
fast adapt a model trained on source domain by only utilizing unlabelled target domain data.

Diffusion models have recently achieved extraordinary results for image generation and
synthesis tasks [11, 12, 34, 37]. At the heart of the diffusion model lies the idea of training
a denoising autoencoder to learn the reverse of a Markovian diffusion process. Trained on
large-scale paired image-text datasets like LAION5B [42], diffusion models, such as Stable-
Diffusion [37], have demonstrated remarkable performance on image synthesis controlled by
natural language. The ability of large-scale text-to-image diffusion models to produce visually
stunning images with intricate details, varied content, and coherent structures, while retaining
the ability to modify and compose semantics, is a remarkable breakthrough. It implies that the
diffusion models implicitly learn both high-level and low-level visual representations from the
vast collections of image-text pairs dataset. Recently, frozen diffusion models have therefore
been shown to provide excellent feature representations for semantic segmentation [56, 60],
providing an alternative to standard supervised [6] or self-supervised pretraining [10].

In light of the success of diffusion models for supervised segmentation, we are led to
contemplate: How well do diffusion-pretrained semantic segmentation models generalize to
unseen domains? In this paper, we first investigate this question by comparing the generaliza-
tion performance of diffusion-pretraining with other popular backbones and pretraining. We
find that the vanilla diffusion models show exceptional generalization ability, surpassing that
of all other backbones. We attribute this to the natural disentanglement of concepts that occur
in diffusion models. As illustrated in Fig. 1(b), diffusion models can generate images of the
same content, such as a car, under a variety of different styles and environments, e.g. real,
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cartoon, and night-time. Due to this disentangled representation, the segmentation head learns
more domain-invariant relations between the underlying features and the scene semantics,
such as ‘car’. When given an image from a different domain, the diffusion-based segmentation
model (Fig. 1(b), right) is therefore able to more robustly identify and segmenting the object,
compared to utilizing a standard backbone with a more entangled representation (Fig. 1(a)).
These observations motivate us to explore the use of diffusion representations for DG/TTDA.

One key feature that distinguishes diffusion models from other backbones for semantic
segmentation is their unique ability to manipulate the backbone using prompt conditioning.
This unique feature grants us direct control over domains, enabling us to generalize and adapt
to new domains directly with parameter-efficient prompts. In this work, we aim at designing
simple yet effective methods for boosting DG and TTDA performance, without resorting to
intricate techniques such as image translation, augmentation, or rare class sampling [13, 14,
57, 64]. To this end, we explore how to utilize the prompt in order to achieve even better
generalization, or to adapt to new domains.

Domain Generalization: To improve the domain generalization ability of diffusion
pretraining semantic segmentation models, we introduce category prompts and scene prompts
as conditioning inputs to distinguish domain-invariant features from domain-variant ones. In
addition, we propose a prompt randomization strategy to further improve the extraction and
disentanglement of domain-invariant representations. This strategy ensures prediction consis-
tency on the same image under different scene prompts, thereby enhancing the robustness of
the model to domain shifts.

Test-Time Domain Adaptation: In order to facilitate adaptation of diffusion pretraining
semantic segmentation models to the target domain during test time, we propose utilizing the
scene prompt as the modulation parameter, which can be optimized via a loss function based
on pseudo-labels during inference. The prompt tuning opens a new avenue for TTDA, which
is parameter-efficient and mitigates the risk of overfitting.

To summarize, our contributions are four-fold:
• We conduct the first analysis of the generalization performance of diffusion pretrained

models for semantic segmentation, demonstrating its superior performance.
• We introduce prompt-based methods, namely scene prompt and prompt randomization, to

further improve the model’s domain generalization capability.
• We propose a prompt tuning method to perform test-time domain adaptation of the model.
• Extensive experiments on four benchmarks demonstrate the effectiveness of our approach.

2 Related Work
Domain Generalization. Previous approaches for domain generalization can be categorized
into two main strategies: 1) image augmentation and 2) feature normalization and whitening.
The first strategy involves randomly stylizing or augmenting images from the source domain,
a technique known as domain randomization [8, 44, 46, 59], to learn domain-invariant
representations. The second strategy focuses on normalizing and whitening the features [2,
20, 29, 31, 48] to ensure robustness across different domains. In contrast to these previous
methods, our approach differs by not relying on stylized or translated images or perturbed
features. Instead, we solely regulate the behavior of the model backbone through the use of
prompts. This new approach allows us to achieve domain generalization without need for
extensive image transformations or feature manipulations.
Test-Time Domain Adaptation. Previous TTDA methods, also known as source-free domain
adaptation [27, 50], often focus on tuning the parameters of batch normalization layers, which
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are parameter-efficient. However, this approach has limitations in terms of adaptability and
compatibility with network architectures other than convolutional neural networks, such
as transformers [52]. Alternatively, some methods optimize the entire model or its main
components, such as the feature backbone [23, 58]. However, such approaches tend to be
parameter-heavy, making them prone to catastrophic overfitting to the noisy unsupervised
learning objective, especially when the quantity of target domain data is limited. In contrast,
our prompt-based method not only offers greater parameter efficiency compared to tuning
batch normalization layers, but it also effectively modulates the behavior of the model.

3 Method
Problem Statement. Test-time domain adaptation (TTDA): The objective of TTDA is to
adapt a model fθ s , with pre-trained with parameters θ s, on a labeled source domain dataset
{xs,ys} in order to improve the performance on the unlabeled target domain {xt}. The
adaptation θ s → θ t is performed post-training, without access to the source domain data.
Domain generalization (DG): DG aims to generalize the model fθ s , trained on labeled source
domain data {xs,ys}, to the unseen target domain {xt}, but without updating the model.
Diffusion-Pretraining for Segmentation. The basic idea [60] is to 1) utilize the pretrained
diffusion model as the backbone network, 2) extract the visual internal representations
{fi(εθ ,xs)}, and cross-attention maps {ai(fi,C)} between the conditioning input C and the
internal visual representations, and 3) feed the extracted {fi(εθ ,xs)} and {ai(fi,C)} into a
learned semantic projection head D, to obtain the predicted semantic segmentation map ŷs,

ŷs =D(fi(εθ ,xs),ai(fi,C)) (1)

Then, the semantic projection head D is trained with the standard cross entropy loss, Ls =
CE(ŷs,ys). During the training, the diffusion model εθ is frozen and only the semantic
projection head D is optimized, i.e. minDLs.

3.1 Prompting Diffusion Representations for Domain Generalization
3.1.1 Generalization Abilities of Diffusion-Pretraining
Given the remarkable success of diffusion-pretraining for semantic segmentation, a natural
inquiry arises: To what extent do diffusion-pretrained segmentation models maintain their
effectiveness under severe domain shift? Motivated by this question, we first set out to
investigate the diffusion-pretrained segmentation model’s generalization performance in
face of significant domain shift. In Table 1, we compare popular pretraining strategies: (1)
supervised pretraining for image classification on ImageNet-22k [6]; (2) self-supervised
pretraining for pixel reconstruction on ImageNet-1k [6]; (3) CLIP pretraining, consisting of
contrastive visual-language pairing [33]; and (4) diffusion-driven pretraining for text-to-image
synthesis on LAION-5B [42]. The oracle is the same network trained in a fully supervised
manner on the target Cityscapes dataset. Note that the reported oracle mIoU values may appear
lower than those in the literature on supervised learning [7, 10, 24, 25, 55], as we follow the
established convention of prior DG and TTDA works that downsample the Cityscapes images
by a factor of two, to ensure fair comparison. In all cases, we assess the model’s performance
on the Cityscapes validation set by reporting the mean intersection-over-union (mIoU). To
evaluate the generalization ability of each model, we present the relative mIoU compared
to the oracle, following [14]. Interestingly, higher oracle performance does not necessarily
equate to better generalization on unseen target domains. This indicates that certain backbone
models struggle with overfitting and do not effectively capture domain-invariant knowledge.
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Figure 2: Method Overview. (a) We employ a frozen diffusion-pretrained backbone and
a trained segmentation head. Our backbone is conditioned on a category prompt and the
introduced the scene prompt, which are first input to the text/image prompt encoder “T/IE".
The prompts aids the extraction of domain-invariant representations (Sec. 3.1.2). (b) We
improve domain generalization by sampling random scene prompts and enforcing consistent
predictions during training, facilitating learning of domain-invariant relations (Sec. 3.1.3). (c)
For TTDA, we further propose a prompt tuning strategy, which adapts the representation by
learning the scene prompt token (Sec. 3.2.2).

Table 1: Comparison to other pretraining methods, under GTA→ Cityscapes.
Architecture Swin-B[24] MiT-B5[55] ConvNeXt-B[25] MAE-ViT-L/16[10] CLIP-ViT-B[33] Stable-Diffusion[37]

Pretraining Type supervised supervised supervised self-supervised visual-language text-to-image
Pretraining Dataset ImageNet-22k ImageNet-22k ImageNet-22k ImageNet-1k CLIP LAION-5B

Generalization 38.9 45.6 46.0 42.7 39.0 49.2
Oracle 79.2 76.4 79.9 76.8 70.0 74.7
Relative 49.1% 59.7% 57.6% 55.6% 55.7% 65.9%

However, we observe that the model using diffusion pretraining achieves superior perfor-
mance in both absolute (49.2 mIoU) and relative (65.9% of the oracle) generalization. This
demonstrates an exceptional generalization ability compared to other pretraining. This remark-
able generalization performance reached by the vanilla diffusion pretrained model, encourages
us to further investigate their potential benefits in domain adaptation and generalization.

The purpose of this work is to develop simple yet effective method for domain adaptation
and generalization problems, without any complex tricks, such as image translation, data
augmentation and class sampling. Building upon the characteristics of diffusion models,
we note that these models are distinguished by their capacity to be finely controlled by the
conditioning input C, derived from image or text prompts. Different from previous methods,
that change the backbone behaviors by modulating specific networks layers, stylizing images
or introducing additional networks, prompts tuning opens a new avenue of manipulating the
backbones representation in a effective and efficient way. In the next sections, we propose
novel prompt tuning methods for domain generalization and test-time domain adaptation,
based on diffusion-pretrained segmentation models. An overview is depicted in Fig. 2.

3.1.2 Category and Scene Prompt
To improve the generalization ability of diffusion-pretrained segmentation models, we first
introduce the category prompt Cc and the scene prompt Cs as the conditioning inputs C =
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[Cc;Cs]. These are used to disentangle the domain-invariant features, such as object classes and
scene layout, and the domain-variant features, such as object color, scene style and lighting.
Category Prompt. The category prompt is typically defined as a template of "a photo of
a [Class]", where "[Class]" are category names (e.g. road, sidewalk and sky for the
street scene image). I.e., the category prompt only provides the class names as the guidance,
to extract the domain-invariant knowledge. For instance, using the "car" class as an example,
diffusion models can synthesize car images with varying attributes by providing different
prompts. However, despite the diverse attribute inputs, the fundamental identity of the object
as a car remains unchanged as long the prompts include "a photo of a car". This
highlights the ability of category prompts to effectively capture knowledge related to the
object’s core identity, i.e. “what is a car?”, from other attributes, such as color/body type. The
core identity of object is domain-invariant and exactly what the domain generalization needs.
For C−class segmentation, category prompts are C tokens, each of which is N−dim vector.
Scene Prompt. The category prompt can capture the main features of an object that stay
the same across different scenarios, i.e. domain-invariant knowledge. To better extract
domain invariant representations, we further condition the network on an introduced scene
prompt. Our hypothesis is that the diffusion network can better extract domain-invariant
representations if it is aware of the image domain. Consider e.g. a night photo of a street
scene. It might be difficult to recognize objects, such as cars, pedestrians, and buildings in
such conditions. However, by making the diffusion representation explicitly aware of the
conditions through a style prompt “A dark night photo”, we believe that it can partly revoke
the domain-specific effect as it will explicitly consider a night-time view of a car, pedestrian,
or building. Thus, to further facilitate the extraction of domain-invariant knowledge across
different domains, we introduce the scene prompt, Cs. One example of scene prompt is a
template "a [scene] photo", e.g. "a GTA5 photo" or "a night photo".

By combining the category prompt Cc and the scene prompt Cs as the conditional inputs,
the predicted semantic segmentation map in Eq. (1) is rewritten as,

ŷs =D(fi(εθ ,xs),ai(fi, [Cc;Cs])) (2)

Note that the scene prompt Cs can not only be defined as the aforementioned text template, but
also be designated as a N−dim learnable prompt, or an image prompt obtained by feeding an
example image into pretrained language-image encoder (e.g. CLIP). With category and scene
prompts employed, there are M =C+1 tokens of N−dim vector as conditioning inputs C.

3.1.3 Prompt Randomization for Generalization
By incorporating the category and scene prompts as conditional inputs, the diffusion-pretraining
segmentation model is able to extract domain-invariant knowledge, leading to enhanced gen-
eralization ability. To further capture domain-invariant knowledge and boost generalization
capabilities, we propose a prompt randomization strategy. Our idea is to enforce consistency
between the semantic predictions under different scene prompts {Ck

s }K
k=1. The intuition is that

a model capable of generalizing well would make similar predictions for images containing
the same content, irrespective of their domain-variant attributes, such as weather or style.

By feeding various scene prompts {Ck
s }K

k=1 into the diffusion backbone in Sec. 3.1.2, the
corresponding semantic segmentation maps are obtained as {ŷs

k}K
k=1, where ŷs

k =D(fi(εθ ,xs),
ai(fi, [C;Ek])). Then, the consistency loss, Lc, between different scene prompts are,

Lc = ∑
p,q∈{1,...,K},q ̸=p

KL(ŷs
p||ŷs

q) =− ∑
p,q∈{1,...,K},q ̸=p

ŷs
p log

ŷs
p

ŷs
q
, (3)
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where KL(·||·) represents the Kullback–Leibler (KL) divergence [4], which aligns the seman-
tic prediction under different scene prompts. The complete learning objective for prompt
randomization is the combination of semantic segmentation loss Ls and consistency loss Lc,

Ltotal =
K

∑
k=1

CE(ŷs
k,y

s)+λLc. (4)

Here, λ is the hyper-parameter used to balance the semantic segmentation loss and the
consistency loss, which is set to 0.1 in this work.

3.2 Prompting Diffusion Representations for TTDA
3.2.1 Test-Time Domain Adaptation
Test-time domain adaptation (TTDA) presents two main challenges that must be addressed:
(1) how can the source-domain initialized model be modulated effectively in light of unsuper-
vised learning objective fraught with noise? (2) What learning objectives should be adopted
to enable optimization if only unlabeled data from the target domain is provided? Our work
primarily addresses challenge (1), and employs a pseudo-label based optimization objective
for challenge (2) as it is proven simple yet effective in the test-time domain adaptation field.

3.2.2 Prompt Tuning for TTDA

Modulation Parameters. To effectively tackle the aforementioned challenge (1) in TTDA,
the main focus is on identifying the relevant parameters that need to be updated in order
to control the behavior of the backbone in a desirable manner. Our diffusion pretraining
models, described in Sec. 3.1, leverage the category and scene prompts to effectively control
the behavior of the backbone. More specifically, the category prompt, Cc, captures domain-
invariant knowledge on the object core identity, shared by the source and target domains. The
scene prompt, Cs, introduces the domain-specific information to further help disentangeling
the representation. Test-time domain adaptation involves a domain shift from the source to
the target domain. Therefore, the scene prompts needs to be updated to accommodate this
shift in domains. The basic idea of our prompt tuning for TTDA is to learn the scene prompt
Cs to facilitate adaptation from the source to the target domain. That is, the scene prompt
serves as the modulation parameter, which can be updated by θ t ← θ s : E ← Cs +∆Cs.
Learning Objective. Our test-time optimization objective Lt is to tune the scene prompt E
supervised by the pseudo-label ỹt = argmaxD(fi(εθ ,xt),ai(fi, [Cc;Cs])), formulated as,

Lt =CE(ŷt , ỹt) , Cs←Cs +∂Lt/∂Cs. (5)

The only optimized parameters during test-time is the scene prompt Cs, which is a N−dim
vector and set as 768-dim in this work. Thus, our prompt-tuning method for TTDA is
parameter-efficient, enabling fast adaptation and helping to mitigate the risk of overfitting.

4 Experiments
Setup. We evaluate the effectiveness of our proposed prompt-based method for DG and
TTDA under different scenarios, including synthetic-to-real and clear-to-adverse benchmarks.
We use the conventional notation A→B to describe the DG and TTDA task, where A and
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Table 2: Comparison to SOTA DG methods. † denotes results obtained from [43].
(a) Synthetic-to-Real.

Method Backbone Extra Data G→C S→C

IBN-Net[29] ResNet-101 ✗ 37.4 34.2
DRPC[59] ResNet-101 ✓ 42.5 37.6
ISW[2] ResNet-101 ✗ 37.2 37.2†

FSDR[15] ResNet-101 ✓ 44.8 40.8
GTR[30] ResNet-101 ✓ 43.7 39.7
SAN-SAW[31] ResNet-101 ✗ 45.3 40.9
SHADE[61] ResNet-101 ✗ 46.7 -
WEDGE[18] ResNet-101 ✓ 45.2 40.9

AugFormer-S[43] MiT-B5 ✗ 45.6 40.3
AugFormer[43] MiT-B5 ✗ - 44.2†

Ours (Van.) Diffusion ✗ 49.2 47.8
Ours (DG-T) Diffusion ✗ 52.0 49.1
Ours (DG-I) Diffusion ✗ 52.0 49.3

(b) Clear-to-Adverse (val set).
Method Backbone Extra Data C→A C→D

ISA[21] ResNet-101 ✗ 47.4 26.1
ISW+ISA[21] ResNet-50 ✗ 47.6 23.1
MixS [63] ResNet-101 ✗ 37.0 9.4
MixS+ISA[21] ResNet-101 ✗ 41.8 20.6
DSU[19] ResNet-101 ✗ 38.3 12.3
DSU+ISA[21] ResNet-101 ✗ 43.3 24.6
IBN-Net [29] ResNet-50 ✗ 44.1 21.7
ISW+MSA[35] ResNet-50 ✗ 47.3 22.5
ISW+MSA [35] ResNet-101 ✗ 49.0 24.8
SiamDoGe [54] ResNet-50 ✗ 52.3 -

Ours (Van.) Diffusion ✗ 57.0 31.2
Ours (DG-T) Diffusion ✗ 58.6 34.0
Ours (DG-I) Diffusion ✗ 58.4 34.0

B are source and target domain, respectively. Synthetic-to-Real: There are two settings,
GTA [36]→ Cityscapes [3] and SYNTHIA [38]→ Cityscapes [3]. Clear-to-Adverse: There
are also two tasks, Cityscapes [3]→ ACDC [41] and Cityscapes [3]→ Dark Zurich [39].
For ease of reference, we use the following abbreviations throughout the text: G→C, S→C,
C→A, and C→D, respectively. Scene Prompt: The scene prompt for prompt randomization
by default is composed of two components: (1) the text description for the source domain,
such as "a GTA5 photo" for the GTA dataset, and (2) the text description for the target domain,
such as "a night photo" for the Dark Zurich dataset, called the text prompt version. As an
alternative of (2), we also experiment with an image from the target domain, i.e. the image
prompt version. Specific prompts used for each experiment are put in the supplementary.

4.1 Comparison with state-of-the-art

Domain Generalization. In Sec. 3.1.3, we propose the prompt randomization strategy for DG
with diffusion pretraining models. As shown in Table 2, our prompt randomization method is
demonstrated to outperform previous SOTA DG methods by a significant margin. Notably,
scene prompts for prompt randomization can be obtained flexibly in different types, including
text (DG-T) and image (DG-I) prompts. And both types are proven effective, improving the
vanilla diffusion models (Van.) performance significantly.
Test-time domain adaptation. In Sec. 3.2.2, we propose the prompt tuning strategy to adapt
the diffusion representation during test time. Results in Table 3 demonstrate the superior
performance of our prompt tuning method for TTDA, achieving a remarkable improvement
of 5.9%, 6.5%, 2.7%, and 4.9% over existing TTDA methods on different benchmarks.
Unsupervised domain adaptation. As show in Table 4, our proposed DG methods (DG-T
and DG-I) and TTDA method exhibit exceptional performance, outperforming even the strong
unsupervised domain adaptation (UDA) methods that have access to both the source and target
domain at the same time for training. Notably, our DG method achieves a performance gain
of 5.8% over the strong UDA method, DAFormer, on the Cityscapes→ACDC benchmark,
despite not utilizing any data from ACDC. Fig. 3 presents qualitative comparisons among our
DG, TTDA, and DAFormer results, illustrating the effectiveness of our method. For instance,
when examining the “road" class, we observe that without prompt conditioning, DAFormer
segments the "road" into the upper sky region. In contrast, our category prompt conditioning,
specifically "a photo of a road," assists the model in learning that the "road" should appear in
the lower part rather than the upper sky region, thus preventing this error from occurring.

Citation
Citation
{Schwonberg, Bouazati, Schmidt, and Gottschalk} 2023

Citation
Citation
{Pan, Luo, Shi, and Tang} 2018

Citation
Citation
{Yue, Zhang, Zhao, Sangiovanni-Vincentelli, Keutzer, and Gong} 2019

Citation
Citation
{Choi, Jung, Yun, Kim, Kim, and Choo} 2021

Citation
Citation
{Huang, Guan, Xiao, and Lu} 2021{}

Citation
Citation
{Peng, Lei, Liu, Zhang, and Liu} 2021

Citation
Citation
{Peng, Lei, Hayat, Guo, and Li} 2022

Citation
Citation
{Zhao, Zhong, Zhao, Sebe, and Lee} 2022

Citation
Citation
{Kim, Son, Lan, Zeng, and Kwak} 2021

Citation
Citation
{Schwonberg, Bouazati, Schmidt, and Gottschalk} 2023

Citation
Citation
{Schwonberg, Bouazati, Schmidt, and Gottschalk} 2023

Citation
Citation
{Li, Zhang, Keuper, and Khoreva} 2023

Citation
Citation
{Li, Zhang, Keuper, and Khoreva} 2023

Citation
Citation
{Zhou, Yang, Qiao, and Xiang} 2021

Citation
Citation
{Li, Zhang, Keuper, and Khoreva} 2023

Citation
Citation
{Li, Dai, Ge, Liu, Shan, and Duan} 2022

Citation
Citation
{Li, Zhang, Keuper, and Khoreva} 2023

Citation
Citation
{Pan, Luo, Shi, and Tang} 2018

Citation
Citation
{Reddy, Singhal, Kumar, Baktashmotlagh, and Arora} 2022

Citation
Citation
{Reddy, Singhal, Kumar, Baktashmotlagh, and Arora} 2022

Citation
Citation
{Wu, Wu, Zhang, Ju, and Wang} 2022

Citation
Citation
{Richter, Vineet, Roth, and Koltun} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Ros, Sellart, Materzynska, Vazquez, and Lopez} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Sakaridis, Dai, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2021

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Sakaridis, Dai, and Gool} 2019



GONG ET AL.: PROMPTING DIFFUSION REPRESENTATIONS FOR SEGMENTATION 9

Table 3: Comparison to SOTA TTDA methods. “Param. Eff." represents parameter efficient.
† represents the baseline is combined with [50] and trained with higher resolution images.

(a) Synthetic-to-Real.
Method Backbone Param. Eff. G→C S→C

TransAdapt[5] ResNet-101 ✓ 37.8 33.7
Tent[50] ResNet-101 ✓ 38.9 35.5
SFDA[23] ResNet-50 ✗ 43.2 39.2
SFUDA[58] ResNet-101 ✗ 49.4 44.2
URMA[9] ResNet-101 ✗ 45.1 39.6
SHOT[22] ResNet-101 ✗ 44.1 -
AUGCO[32] ResNet-50 ✓ 47.1 39.5
HCL[16] ResNet-101 ✗ 48.1 43.5
C-SFDA[17] ResNet-101 ✗ 48.3 44.6
CO-SFDA[17] ResNet-101 ✓ 46.3 43.0

Ours (Van.) Diffusion – 49.2 47.8
Ours (TTDA) Diffusion ✓ 52.2 49.5

(b) Clear-to-Adverse.
Method Set Backbone Param. Eff. C→A C→D

TTBN[28]

V
al

-S
et

ResNet-101 ✓ - 28.0
TENT[50] ResNet-101 ✓ - 26.6
AUGCO[32] ResNet-101 ✓ - 32.4
CO-SFDA[17] ResNet-101 ✓ - 33.2
MSA[35] ResNet-101 ✓ 47.9 22.8
MSA[35] MiT-B0 ✓ 46.6 20.2

Ours (Van.) Diffusion – 57.0 31.2
Ours (TTDA) Diffusion ✓ 58.5 37.0

TENT

Te
st

-S
et

ResNet-101 ✓ 49.0 -
HCL ResNet-101 ✓ 46.8 -
URMA ResNet-101 ✓ 47.2 -
SegFormer [55] † MiT-B5 ✗ 59.3 42.8

Ours (TTDA) Diffusion ✓ 62.0 47.7

Table 4: Comparison between our DG, TTDA method to UDA methods, under C→A. All
methods are evaluated on the test set through the online public evaluation server. † represents
the use of extra auxiliary reference images that are geographically aligned and captured under
clear-weather/daytime.

Setting Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

Cityscapes→ ACDC (Test Set)

UDA

ADVENT[49] 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7
GCMA[39] † 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4
MGCDA[40] † 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7
DANNet[53] † 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0
DAFormer[14] 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4

DG Ours (DG-T) 89.6 62.5 84.4 48.6 39.9 49.2 48.7 55.6 74.5 48.3 86.1 60.3 39.9 84.9 62.6 63.5 73.6 37.7 52.3 61.2
Ours (DG-I) 91.1 85.9 84.7 83.8 76.4 66.3 66.1 62.6 56.4 56.1 54.6 54.4 51.4 50.6 49.6 47.8 42.2 41.1 38.8 61.0

TTDA Ours 88.2 86.0 85.6 85.5 74.0 73.8 62.3 61.2 60.0 57.6 56.5 55.9 52.3 52.0 50.8 50.3 42.4 42.2 41.8 62.0

4.2 Ablation Study and Prompts Analysis
Different Scene Prompts Comparison. We conduct ablation experiments to evaluate the
effectiveness of our proposed scene prompt in improving the domain generalization perfor-
mance of diffusion pretraining models. With and Without Scene Prompt: First, we compare the
performance of models with and without scene prompt to verify its effectiveness. As shown
in Table 6, the models with any of the different scene prompts (target, learned, and source) all
outperformed the baseline model without scene prompt, achieving mIoU scores of 50.9%,
51.4%, and 51.4% respectively, compared to 49.2% for the baseline on the GTA→Cityscapes
benchmark. Different Scene Prompts: Next, we investigate the impact of different scene
prompt choices by comparing the prompts obtained from 1) text description of target domain,
referred to as "Target"; 2) text description of source domain, referred to as "Source"; and 3)
a learnable parameter, referred to as "Learned". Our results show that the "Source" scene
prompt outperforms the "Target" and "Learned" prompts on different benchmarks. This
finding confirms our statement in Sec. 3.1.2 that the scene prompt is used to disentangle
domain-invariant knowledge and revoke the effect of domain-variant factors in the source
domain. Hence, the "Source" prompt, which captures domain-variant factors in the source
domain, works best.
Increased Number of Class Prompts. To assess the impact of classes in category prompts,
we conduct an experiment in which more classes were utilized in the category prompt. More
specifically, in all GTA→Cityscapes experiments in this work, the category prompt consisting
of 19 classes is used. To obtain the category prompt with more classes, we utilize 150 classes
from the ADE20K dataset [62]. This expanded set of classes not only includes the 19 object
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Table 5: Prompts analysis on, 1) increased number of category prompts (150 classes); 2)
scene prompts (a “water, grass, sand, painting" photo) irrelevant to source/target domain,
under G→ C.

Method Road SW Build Wall Fence Pole TL TS Veg Terrain Sky Person Rider Car Truck Bus Train MC Bike mIoU

Increased number of category prompts

19 Classes 70.9 25.7 88.1 54.5 43.6 43.5 46.3 32.7 87.8 52.1 90.9 63.0 24.9 87.7 34.5 42.6 2.9 22.2 20.8 49.2

150 Classes 76.0 29.9 88.2 41.5 41.3 45.0 45.2 29.5 87.8 52.4 90.2 63.7 27.7 86.9 34.6 47.3 8.1 28.6 28.4 50.1

Prompt randomization with irrelevant scene prompts

Irrelevant 85.6 36.7 87.8 52.7 44.9 41.7 45.8 31.4 87.5 51.2 89.7 64.1 29.5 87.4 29.7 35.7 13.0 31.7 36.9 51.7
DG-Text 87.7 36.2 87.7 43.3 38.2 38.1 44.4 31.2 87.6 48.3 89.8 63.9 31.7 89.4 61.9 50.6 0.1 24.5 33.9 52.0

classes used in our standard category prompt, but also encompasses a variety of additional
classes. Our analysis in Table 5 demonstrates that increasing the number of classes in the
category prompt leads to a improvement in the generalization ability of diffusion pretraining
semantic segmentation models, 50.1% vs. 49.2%. This improvement can be attributed to the
fact that providing a greater number of classes as the category prompt enables the diffusion
representations to more accurately distinguish between a broader range of class objects,
thereby mitigating the issue of mis-classification. This finding suggests a promising direction
for future work to further improve the generalization ability by incorporating more auxiliary
classes into the category prompt.
Prompt Randomization with Irrelevant Prompts. In our primary experiments, the scene
prompt is generated from text/image prompts that are relevant to the target domain. However,
to evaluate the flexibility and scalability of the scene prompt, we conduct an experiment in
which the scene prompt is generated from a random, unrelated scene description. For instance,
in the GTA→Cityscapes experiment, we used scene prompts such as "a sand photo," "a grass
photo," "a painting photo," and "a water photo." Results presented in Table 5 demonstrate that
the prompt randomization method using irrelevant prompts performs favorably in comparison
to the method using target-relevant prompts, achieving 51.7% and 52.0%, respectively.

(a) RGB (b) DAFormer (UDA) (c) Ours (TTDA) (d) Ours (Generalize)

Figure 3: Qualitative compar-
isons between our DG, TTDA and
UDA [14] method. DAFormer is
a UDA method, using full target
domain data during training.

Table 6: Ablation study and comparisons be-
tween different prompts types, under synthetic-to-
real and clear-to-adverse benchmarks. Results are
evaluated on the val-set of target domain.
Setting w/o Cs Target (Cs) Learned (Cs) Source (Cs) TTDA DG-T DG-I

G→C 49.2 50.9 51.4 51.4 52.2 52.0 52.0
S→C 47.8 48.4 48.2 48.8 49.5 49.1 49.3
C→D 31.2 32.2 30.4 32.8 37.0 34.0 34.0
C→A 57.0 57.0 58.0 58.0 58.5 58.6 58.4

5 Conclusion

In this work, we conduct the first study on the generalization performance of diffusion
pretraining semantic segmentation models, showing their superiority over other pretraining.
We introduce novel prompt-based methods—the scene prompt and prompt randomization—to
enhance domain generalization. Also, we propose prompt tuning for efficient and effective test-
time domain adaptation. Extensive experiments validate our simple yet powerful approach.
Limitations. The current approach employs hand-designed prompts. An interesting future
direction is to leverage other large language models to automatically generate accurate prompts
for our method.
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