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A Details of the Experimental Setup

A.1 Datasets

Two large-scale image datasets are adopted in our experiments, including Pascal VOC 2007
[9] and MS-COCO 2017 [20]. Pascal VOC 2007 (VOC) is a standard dataset for object de-
tection, consisting of 9,963 images with 24, 640 box annotations. MS-COCO 2017 (COCO)
is also a popular object detection benchmark, containing 328,000 images of generic objects.
Following [22], clean annotations are perturbed to simulate noisy bounding box annotations
in our experiments, which is performed once for each dataset. Specifically, let cy, ¢y, w, h rep-
resent the central x-axis coordinate, central y-axis coordinate, width, and height of a clean
bounding box, respectively. We simulate a noisy bounding box by randomly shifting and
scaling a clean one, which can be formulated as

Cx = cx +Ax W, Cy=cy+Ay-h,
{X x T Ox y = ¢y T4y (15)

W= (14+Ay)-w, h=(1+A)-h,

where Ay, Ay, Ay, and A, obey the uniform distribution U (—n,n) and n is the noise level. For
example, when 7 is set to 40%, Ay, Ay, Ay, and A, would ranges from —0.4 to 0.4. Note that
Equation 15 is conducted on each bounding box of the training set. Such a noise simulation
can guarantee access to real ground-truths for analyzing training behaviors and evaluating
the performance of box refinement. Noise levels are set to {10%,20%,30%,40%} for VOC
and {20%,40%} for COCO.

A.2 Implementation Details

Following [22], we implement our method on FasterRCNN [28] with ResNet-50 [12] as the
backbone. The idea of DISCO can be easily generalized to other frameworks and we choose
to perform our experiments with FasterRCNN as it is widely adopted [17]. As a common
practice, the model is trained with the “1x" schedule [10]. Notably, all other training config-
urations are aligned with [22] to ensure fairness. As commonly done, mean average precision
(mAP@.5) and mAP@][.5,95] are used for VOC and COCO respectively. Specifically, we
report APsy for VOC and {AP, APs, AP7s, APs, APy, AP} for COCO.

A.3 Hyperparameter Selections

There are six hyperparameters in DISCO, including the temperature coefficient 7', the aug-
mented proposal number N’, two box fusion hyperparameters & and 3, and two loss weights
yand A. As there are no additional validation sets available, we tuned these hyperparameters
based on the performance on the training set with clean annotations, which can also avoid
the leakage of test data. For the sake of simplicity, we empirically fix N’ and y to 10 and
0.3, and then tuning T € [0.01,0.2], & € [3,10], B € [0.7,0.9], and A € [0.01,0.2]. To ensure
reproducibility, the selected hyperparameters for all settings are reported in Table 4. Notably,
we have just roughly tuned these hyperparameters by selecting some regular values, thus the
performance of our method in Table 1 has the potential to be better.
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Hyperparameter
Dataset Noise Level
T N o B Y A

10% 0.05 10 10 0.7 0.3 0.05

20% 0.05 10 10 0.7 0.3 0.05
voC

30% 0.1 10 10 0.8 0.3 0.1

40% 0.1 10 5 0.8 0.3 0.1

20% 0.01 10 10 0.7 0.3 0.01
COCO

40% 0.1 10 5 0.8 0.3 0.1

Table 4: Hyperparameter selections. We report the hyperparameters for all settings to
ensure reproducibility.

Hyper. | Value | APs, Hyper. | Value | APsg Hyper. | Value | APsg
0.01 | 68.6 5 68.5 3 68.3

T 0.1 68.7 N 10 68.7 o 5 68.7
02 | 67.8 20 | 68.6 7 68.2

Hyper. ‘ Value | APsp Hyper. ‘ Value | APsg Hyper. | Value | APsg
0.7 68.1 0.1 68.3 0.05 | 67.9

B 0.8 68.7 Y 03 | 68.7 A 0.1 68.7
09 | 673 0.5 | 684 0.15 | 674

Table 5: Ablation studies of hyperparameter sensitivity. DISCO can still achieve rela-
tively stable performance when these hyperparameters vary within a moderate range.

B More Ablation Studies

In this section, we conduct more ablation studies to further verify the effectiveness of the
proposed DISCO. These ablation studies contain hyperparameter sensitivity, backbone com-
patibility, and the execution number of DISCO. Unless otherwise specified, the following
experiments are all based on VOC at the 40% noise level.

B.1 Hyperparameter Sensitivity

Here we evaluate the sensitivity of the hyperparameters used in DISCO. Note that we choose
some moderate values rather than extreme ones to reasonably evaluate the sensitivity of
each hyperparameter. The experimental results are reported in Table 5. As we can see, the
temperature coefficient T is relatively robust when set to 0.01 or 0.2. Tuning T to a proper
value can contribute to better performance. Besides, it can be observed that the augmented
proposal number N’ is insensitive when varying from 5 to 20. This is the reason why we
empirically fix N’ to 10 for all settings. Moreover, the hyperparameters regulate the fusion
of two bounding boxes (i.e., & and f3) is also insensitive when varying within a moderate
range, showing the effectiveness of our method. Furthermore, two loss weights ¥, A also
remain insensitive while A is relatively crucial. This is because it controls the strength of an
extra classification loss term, directly affecting classification accuracy.
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Method Backbone AP APsy AP;5 APs APy APL
Execution Num. APs

OA-MIL [22] 186 426 129 92 190 265
ResNet-50 1 68.1

DISCO (Ours) 21.2 457 169 114 247 278
2 68.7

OA-MIL [22] 193 441 131 93 208 278
ResNet-101 3 67.9

DISCO (Ours) 2277 476 184 129 26.6 29.8

Table 6: Left: Ablation studies of backbone compatibility. The experiment is conducted
on COCO at 40% noise level with ResNet-50 and ResNet-101. DISCO can still outperform
OA-MIL when equipped with different backbones. Right: Ablation studies of the execu-
tion number of DISCO. Our execution strategy can achieve superior performance.

B.2 Backbone Compatibility

Following [22], the benchmark experiments are performed with ResNet-50 [12] as the back-
bone. To further demonstrate the superior performance of our method, we conduct an ad-
ditional experiment based on different backbones. Specifically, in this experiment, DISCO
[22] is compared to OA-MIL on COCO at the 40% noise level with the backbone set to
ResNet-101 [12], and other experiment setups remain the same. In this way, we aim to eval-
uate the performance of our DISCO for a large-scale dataset when it is equipped with an
advanced backbone. The experimental results are reported in Table 6. It can be observed
that DISCO can further improve performance and still achieve SOTA results.

B.3 Execution Number of DISCO

In this work, DISCO is performed twice in a training iteration, where the first time is for
proposal re-assignment and the second time is for obtaining better supervision. We compare
such an execution strategy with two other options: 1) The execution number of DISCO is
set to 1: proposal re-assignment is removed and the only one time of DISCO is for obtaining
better supervision; 2) The execution number of DISCO is set to 3: the first two times are
for proposal re-assignment and the third time is for obtaining better supervision. As shown
in Table 6, more execution numbers of DISCO do not contribute to better detection perfor-
mance. This is because such an improper strategy could result in excessive box refinement
and thus influence the learning stability of detectors. Moreover, it also can be observed that
our execution strategy can achieve superior performance.

C More Qualitative Results

C.1 Box Refinement

As an extension to Figure 5, we present more qualitative results of box refinement in DISCO
(see Figure 6), which shows that DISCO can attain tighter bounding boxes than noisy ground-
truths. As shown in Figure 6, it is worth noting that DISCO can achieve consistent refinement
of bounding boxes for different objects varying in size.
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Figure 6: Qualitative results of box refinement in DISCO. Real ground-truths and noisy
ground-truths are marked in orange and blue. Refined bounding boxes produced by the first-
/second-time DISCO are indicated in dotted/solid red. The first-time refined boxes can cover
the objects more tightly than noisy ground-truths, and the second-time refinement can further
contribute to more precise ones.

C.2 Interpretability

In Figure 7, more qualitative results of interpretability in DISCO are provided to demonstrate
such a characteristic of our method. As shown in Figure 7, when trained with DISCO, the
detector can output a reasonable variance as the confidence for each border of predicted
bounding boxes, which shows that the detector is capable of realizing which border may be
inaccurately predicted.
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Figure 7: Qualitative results of interpretability in DISCO. We randomly choose an as-
signed proposal (yellow) per image to report its estimated variances. Real ground-truths and
noisy ground-truths are marked in orange and blue. Note that the variance is scaled by the
width and height for clarity. With the proposed DA-Est, DISCO can estimate reasonable
variances for each border of box prediction.



