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Abstract

Interactive image segmentation aims to achieve pixel-wise localization of an object
of interest in an image using minimal user annotations. Despite advances, existing meth-
ods suffer from accuracy fluctuations and notable constrained minimal errors due to an-
notation sparsity and neural network limitations. To improve segmentation quality and
stability, this paper proposes the Temporal Information Augmentation (TIA) method.
Informed by the concept of the proportional-integral-derivative (PID) controller, TIA
integrates contextual information from multiple interaction rounds to enhance feature
representations. Specifically, TIA strengthens the response of current feedback infor-
mation through cosine feature similarities, fuses foreground and background instructive
information from past interaction rounds with current features, and refines features in po-
tential wrongly segmented areas by perceiving changes in the segmentation results. By
incorporating current, past, and future contextual cues, TIA improves the discrimination
ability of the segmentation model for target objects. Experimental results on the Grab-
Cut, Berkeley, SBD, and DAVIS datasets with SegFormer- and ViT-based backbones
have demonstrated state-of-the-art performance, highlighting generalization capability,
efficiency, and effectiveness of TIA.

1 Introduction
Interactive image segmentation is a technique that obtains a segmentation mask of a target
object in an input image based on simple user-provided cues. It allows users to engage
in multiple rounds of interaction, where they can provide new annotations on the wrongly
segmented regions and receive a new segmentation mask. The objective of interactive image
segmentation is to achieve precise segmentation results with minimal labeling. Because
of the manipulability and flexibility, interactive image segmentation is a crucial technique
directly used in applications such as photo editing [13] and medical imaging diagnosis [34].
Besides, it enables artificial-intelligence-assisted data labeling [28] and therefore becomes
an auxiliary tool for many challenging segmentation-related tasks, such as scene parsing and
autonomous driving [1].
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Figure 1: Two primary problems encountered by existing methods (taking SimpleClick [21]
as an example), which are the accuracy fluctuation and the constrained minimal error.

We reckon that an interactive image segmentation model resembles a closed-loop control
system in the field of automatic control. A closed-loop control system regulates a variable
based on the error signal fed back [2]. Concretely, in a control loop, the difference between
the target setpoint and the measured value of the variable is calculated and fed back to the
system, and then the system adjusts the control signal to minimize the difference. An in-
teractive image segmentation system operates similarly. It corrects a segmentation result
according to user feedback. Since the feedback information is a bridge connecting adjacent
interaction rounds, it is natural to exploit it to facilitate the segmentation process.

There are two types of feedback used in an interactive image segmentation system: user-
annotated clicks and the segmentation mask generated in the last interaction round. Clicks
are usually placed on the inaccurate segmentation areas of a predicted segmentation mask
and thus help the segmentation network quickly locate those areas. To utilize feedback
clicks, previous methods [14, 17, 32, 38] encoded all clicks into interaction maps using Gaus-
sian filtering [38] or disk encoding [33], and jointly fed the input image and the maps into
the segmentation network. The feedback segmentation result provides pixel-level semantic
prior information about the foreground object, which helps the segmentation network recog-
nize the position and shape of the foreground object. Starting from RITM [33], subsequent
research [4, 12, 20, 21, 35] fed back the segmentation mask generated in the last interaction
round as an additional channel of input.

However, previous work has primarily encountered two main issues, as depicted in Fig-
ure 1. Firstly, there is a potential for a significant decrease in segmentation accuracy when a
new click is added, leading to a large fluctuation in the accuracy curve as the number of anno-
tated clicks increases, referred to as accuracy fluctuation. This is akin to the overshoot prob-
lem encountered in dynamic system controls [24]. Secondly, there is disparity between the
accuracy obtained under a restricted number of annotated clicks after segmentation reaches
a steady state and the 100% accuracy, referred to as constrained minimal error. This prob-
lem is analogous to the concept of steady-state error in control theory [24]. Possible reasons
for these two issues are as follows. Firstly, both types of feedback information have their
limitations. Annotated clicks, although accurate, are scarce and provides partial guidance.
The feedback segmentation results are dense but noisy. Secondly, existing methods estab-
lish long-range dependencies through stacked convolutional layers and non-local attention
without imposing additional constraints related to semantic information, potentially causing
the new clicks to affect the predicted labels of pixels that are spatially distant [35]. Thirdly,
previous methods focused on manipulating information flow in the spatial perspective of the
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Figure 2: A comparison between a common PID controller and the proposed controller.

current state while neglecting instructive temporal information from historical states.
To tackle the aforementioned challenges, we introduce the idea of automatic control into

the realm of interactive image segmentation. A typical closed-loop controller structure is the
proportional-integral-derivative (PID) controller [23] (Figure 2). It utilizes three adjustment
parameters—the proportional, the integral, and the derivative terms—to determine the next
control action based on the current, past, and anticipated future errors, which accelerates the
process of reaching the desired setpoint and dampen the overshoot issue.

Inspired by the PID control, we propose Temporal Information Augmentation (TIA)
method, which incorporates temporal feedback information from multiple interaction rounds
to fit the ideal segmentation result with fewer clicks. The proposed method is composed of
three branches: Interaction Propagation (IP), Memory Incorporation (MI), and Difference
Awareness (DA), which respectively correspond to the three terms P, I, and D in a PID con-
troller. The IP branch produces a response that is proportional to the label of a new click
and utilizes this response to propagate the correction intention, derived from the new click,
across the entire feature map. The MI branch maintains a memory bank that stores past error
signals—i.e., feedback information from previous interaction rounds—and consolidates this
history information into the current state, which mitigates the issue of accuracy fluctuation.
Meanwhile, the DA branch models the difference between the previous segmentation mask
and the newly predicted one, thus enabling the segmentation network to focus on potential
erroneous areas and improving segmentation results. By integrating present information pro-
cessing, history knowledge integration, and future trend prediction,the proposed method can
achieve high segmentation accuracy with fewer annotations.

2 Related Work

2.1 Interaction Feedback Exploitation

Originally, the feedback information in each interaction round comprised only newly anno-
tated clicks [17, 18? ]. Sofiiuk et al. [33] introduced the generated segmentation mask from
the last interaction round as additional feedback. To harness interaction feedback, certain
methods [10, 35] have investigated the appropriate feedback fusion location, such as early fu-
sion and late fusion, while others [7, 15] have focused on developing efficient or lightweight
feedback processing structures. Nonetheless, prior interactive image segmentation methods
only produced correction signals from the current state in each interaction round, thus re-
sembling a proportional controller, and these methods easily led to the accuracy fluctuation
issue and posed significant constrained minimal errors.
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Figure 3: The overall network structure of TIA. The network basically comprises of three
parts. The backbone extracts features from input images and feedback. The neck constructs a
feature pyramid and incorporates temporal information. The head fuses multi-level features
and outputs the segmentation mask.

2.2 PID Control in Computer Vision

PID controllers have been applied to various computer vision tasks. In object tracking, a PID
controller was employed to manage the position and the orientation of a camera, enabling it
to follow moving objects at each time step [25, 31]. More recently, PIDNet [37] was pro-
posed to achieve real-time semantic segmentation. In the PIDNet, the P branch parses and
retains details, the I branch integrates long-range context dependencies, and the D branch
extracts high-frequency information from feature maps. Notably, as there is no feedback
generated in the semantic segmentation task, all three branches of PIDNet exclusively oper-
ate in the spatial domain of feature maps, without involving any concepts about the past and
the future. In contrast, our method aggregates present, past, and future information to boost
segmentation performance.

3 Method

3.1 Preliminaries

At a time step t, a PID controller calculates an error value e(t) and outputs a control variable
u(t) based on the proportional (P), integral (I), and derivative (D) terms. Mathematically,
u(t) = KPe(t)+KI

∫ t
0 e(τ)dτ +KD

d
dt e(t), where KP, KI , and KD denote the scaling coeffi-

cients for the P, I, and D terms respectively. The term P produces an instantaneous response
proportional to the current error value e(t). The term I fully accounts for the magnitude and
the duration of errors and mitigates the steady-state error. The term D estimates the future
trend of the error based on the current rate of change of e(t), making the controller respond
fast to a sudden change of the error and thus reducing the overshoot issue. Combining the
three terms, a PID controller can apply accurate and responsive correction on many industrial
control systems.
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Figure 4: The components of the proposed Temporal Information Augmentation, which
are the Interaction Propagation module, the Memory Incorporation module, the Difference
Awareness module, and the fusion module.

3.2 Overview

The overview of the proposed architecture is depicted in Figure 3, which is primarily divided
into three parts: backbone, neck, and head. Disk encoding [33] is employed to encode
user-provided clicks into interaction maps. In the backbone, the input image I ∈ RH×W×3

and the interaction feedback are separately transformed into a sequence of tokens, added
together, and passed into a backbone to produce a feature map FFF0. The neck consists of a
simple feature pyramid (SFP) [16] and the proposed TIA. The former extracts multi-scale
features at {1/4,1/8,1/16,1/32} of the original image resolution across four stages. The
latter enhances the features by incorporating both past and present feedback information and
activating the segmentation difference between two adjacent interaction rounds, as described
in Section 3.3.1-3.3.3. Lastly, the head, following SimpleClick [21], comprises multilayer
perceptrons (MLPs), upsampling, and concatenation, which is lightweight and effective.

3.3 Temporal Information Augmentation (TIA)

3.3.1 Interaction Propagation (IP)

In click-based interactive image segmentation, user annotations are sparse relative to the
number of pixels in the entire image. Consequently, a high-performing network needs to be
able to infer global segmentation correction intentions from local hints. Additionally, ex-
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isting methods [12, 20, 21] typically encode user-annotated clicks without considering their
sequences, which may weaken the instruction of the new click. To enhance this capability,
we propose the Interaction Propagation (IP) to propagate correction information provided by
a new click from local to global scope.

The IP branch is shown in Figure 4(a). It enhances the features of potential pixels that
may belong to the same category as the new annotated clicks. To identify these potential
pixels, the feature similarities between all pixels and a new click are calculated as follows:

SSS = ||φ1(FFF)||2 ⊗||φ2(FFFnew)||2, (1)

where φ1 and φ2 are two 1× 1 convolutions, and || · ||2 denotes 2-norm. This calculation is
inspired by FCFI [35]. Then, we enhance the features in the potential positions in a soft way:

FFF IP = φ3(FFF)⊙SSS+FFF , (2)

where φ3 is 1× 1 convolution. To effectively identify the correct potential pixels based on
this feature similarity, we construct an estimated segmentation mask M̂MMIP = lnewSSS + (1−
lnew)(1−SSS) using the similarity matrix SSS and the label of the new click lnew ∈ {0,1}. M̂MMIP is
supervised by the mean square error (MSE) loss (Section 4.1), which also helps enhance the
features generated by the SFP.

3.3.2 Memory Incorporation (MI)

For interactive image segmentation, steady-state error might be attributed to inherent model
defects or information loss. To reduce the error, we propose the Memory Incorporation (MI),
depicted in Figure 4(b). The MI branch abstracts historical features into object descriptors,
which encode high-level information about an object instance and scene context, and in-
teract them with current features, thereby enhancing the distinctiveness of foreground and
background within the features.

Object descriptors, denoted as DDD ∈ R(1+K)×CD , integrate CD-dimension feature vectors
for the target object and K (a perfect square) background patches. The generation process
is illustrated in the blue block in Figure 4(b). At each interaction round, the final segmenta-
tion mask M̂MM

t
o is divided into a foreground mask M̂MM f g and a background mask M̂MMbg. In the

foreground/background mask, pixels belonging to foreground/background are set to 1, while
others are set to 0. The background mask is evenly divided into

√
K ×

√
K patches. Each

object descriptor is obtained by averaging the features of pixels that are assigned to 1 in the
corresponding mask or patch. Take the foreground object descriptor as an example:

DDD f g = ∑(F ⊙ M̂MM f g)/(∑M̂MM f g + ε), (3)

where ε is a small constant to avoid division by zero. A memory bank with a certain capacity
is maintained to store the object descriptors from the past few interaction rounds.

The generated object descriptors are then employed to activate the current features FFF
through attention. FFF is encoded by 1× 1 convolution first. In the first interaction round,
where the memory bank is empty, the object features are directly used to generate new object
descriptors. In the subsequent interaction rounds, all the object descriptors in the memory
bank are concatenated in depth. Then, cross attention is applied with the object features as
query and the previous object descriptors as key and value:

FFFMI = Softmax(
FFFDDDT
√

Cd
)DDD. (4)
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The output FFFMI is used to generate new object descriptors.

3.3.3 Difference Awareness (DA)

To improve segmentation quality with a reduced number of clicks, we introduce the Differ-
ence Awareness (DA) technique. Inspired by the PID controller, which anticipates future
trends to alleviate overshoot, DA predicts the disparities between the current segmentation
mask and that of the preceding interaction round. These disparities serve as heuristic cues
to highlight potential segmentation errors. This allows the segmentation network to focus
on the areas that needing correction and refines the features in those areas. Additionally, the
“prediction-refinement” process enhances the network’s self-perception ability regarding the
segmentation trends and mitigates fluctuations in accuracy.

As shown in Figure 4(c), a series of 1×1 convolution blocks, denoted as φ4, is utilized
to predict a coarse segmentation mask M̂MMc from the features FFF . Subsequently, the element-
wise difference between M̂MMc and the segmentation mask generated in the last interaction
round M̂MM

t−1
o is calculated. The difference helps the segmentation network focus on wrongly

segmented areas in the last interaction round and corrects the current feature. This process
can be formulated as

FFFDA = φ5(concat(φ4(FFF)− M̂MM
t−1
o ,FFF))+FFF , (5)

where φ4 and φ5 are convolution blocks, and “concat(·,·)” represents concatenation in depth.

3.3.4 Fusion

The fusion module (Fig. 4(d)) receives outputs from the IP, MI, and DA modules as inputs to
enhance the features FFF . Specifically, the inputs are concatenated along the channel dimen-
sion, followed by a convolutional block φ6 that autonomously selects important information
from the three inputs to generate correction signals. These correction signals are then fused
into the feature FFF through a residual connection. This process can be represented as:

FFFenh = φ6(concat(FFF IP,FFFMI ,FFFDA))+FFF . (6)

3.4 Loss
To supervise the training of the segmentation network, two kinds of losses were utilized:
MSE loss and the normalized focal loss (NFL) [33], denoted as Ln f l . The ground truth mask
is denoted as MMM. The total loss function is

L= 0.25
4

∑
i=1

Lmse(M̂MM
i
IP,MMM)+0.25

4

∑
i=1

Ln f l(M̂MM
i
c,MMM)+Ln f l(M̂MM

t
o,MMM), (7)

where the superscript i denotes the index of stage.

4 Experiments

4.1 Experimental Setup
Dataset. We adopted four public benchmarks to evaluate the proposed method: 1) Grab-
Cut [29]: 50 images each with a corresponding instance mask; 2) Berkeley [22]: 96 images
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and 100 instance masks in total; 3) SBD [11]: 8,498 images for training and 2,820 images in
the validation set, including 6,671 instance-level masks; 4) DAVIS [27]: 345 frames sampled
from 50 high-quality video sequences.

Implementation Details. During training, the following data augmentation techniques
were adopted: random resizing with a scale ranging from 0.5 to 2.0, random flipping, ran-
dom cropping, and random jittering of brightness, contrast, and RGB values. The size of
an input image was 448× 448. Plain ViT [6] and SegFormer [36] were employed as the
backbone separately. The backbone was pretrained on ImageNet-1K [30]. The segmentation
network was trained for 55 epochs using two NVIDIA GeForce RTX 3090 GPUs. An Adam
optimizer with β1 = 0.9 and β2 = 0.999 was applied. The learning rate was initialized as
5×10−5 and multiplied by 0.1 after 50 epochs. For the hyper-parameters, we set CD = 256,
K = 16, and ε = 10−6. TIA was implemented in PyThon and PyTorch [26].

Click Simulation. During each iteration of the training process, a random number of user
interaction and segmentation rounds will be simulated, with a maximum of 24 rounds. Fol-
lowing InterFormer [12], a sampling approach with probability exponentially decaying with
the number of rounds is used to select the number of simulated rounds. In both the training
and inference stages, a single new click was utilized in each interaction round targeting the
incorrectly segmented area. Following the standard protocol [21, 32, 33], this new click was
positioned at the center of the largest false negative or positive connected component de-
tected in the previous segmentation mask. The maximum number of simulated rounds was
limited to 20 for each image during inference.

Evaluation Metrics. Our approach is accessed using eight evaluation metrics, which are
classified into five categories. The specifics of these metrics are described as follows. (1)
Overall quality. ①IoU@N [38]: the mean intersection over union (IoU) achieved for all
images when provided N clicks; ②NoC@α [38]: the mean number of clicks (NoC) to reach
a specific IoU threshold α for all images; (2) Boundary Quality. ③BIoU@N [20]: the mean
boundary IoU (BIoU) [5] achieved for all images when provided N clicks; ④ASSD@N [20]:
the average symmetric surface distance (ASSD) achieved when provided N clicks; (3) Effi-
ciency. ⑤SPC [32]: the average running time for all images in seconds per click. To better
validate the efficacy of our approach in enhancing the accuracy and stability of the interac-
tive segmentation process, we propose the following metrics: (4) Stability. ⑥NoDCN : the
number of degeneration cases (NoDC) with N clicks, which are cases that obtain lower IoU
after the addition of a new click; ⑦mDIoU: the mean decrease in IoU (mDIoU) of exam-
ples where the addition of a new click leads to a decrease in IoU; (5) Performance Ceiling.
⑧CME: the mean constrained minimal error (CME) for all images, which is the difference
between the peak accuracy obtained under the constraint of a limited number of clicks and
100% accuracy.

4.2 Comparison with Previous Work

The quantitative segmentation results, segmented by different backbones, are tabulated in
Table 1 and Table 2. The best and the second-best results for different backbones are writ-
ten in bold and underlined, respectively. The experimental results indicate that our method:
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Method Backbone GrabCut Berkeley SBD DAVIS
NoC@85% NoC@90% NoC@85% NoC@90% NoC@85% NoC@90% NoC@85% NoC@90%

†f-BRS-B [32] ResNet-101 2.30 2.72 2.44 4.57 4.81 7.73 5.04 7.41
†CDNet [3] ResNet-101 2.42 2.76 2.08 3.65 4.73 7.66 5.33 6.97
†FocusCut [20] ResNet-101 1.46 1.64 1.81 3.01 3.40 5.31 4.85 6.22
†FCFI [35] ResNet-101 1.64 1.80 1.56 2.84 3.26 5.35 4.75 6.48
‡RITM [33] HRNet-18s 1.54 1.68 1.69 2.60 4.04 6.48 4.70 5.98
‡FocalClick [4] HRNet-18s 1.48 1.62 1.72 2.66 4.43 6.79 3.90 5.25
‡FCFI [35] HRNet-18s 1.50 1.56 1.54 2.05 3.88 6.24 3.70 5.16
‡RITM [33] HRNet-18 1.42 1.54 1.47 2.26 3.80 6.06 4.36 5.74
‡FCFI [35] HRNet-18 1.38 1.46 1.41 1.96 3.63 5.83 3.97 5.16
†GPCIS [39] SegFormer-B0 1.60 1.76 1.84 2.70 4.16 6.28 4.45 6.04
‡FocalClick [4] SegFormer-B0 1.40 1.66 1.59 2.27 4.56 6.86 4.04 5.49
‡VTMR [8] SegFormer-B0 1.42 1.54 1.64 2.18 4.43 6.75 3.81 5.39
‡TIA (Ours) SegFormer-B0 1.38 1.42 1.40 1.97 4.12 6.35 3.68 5.14
‡FocalClick [4] SegFormer-B3 1.44 1.50 1.55 1.92 3.53 5.59 3.61 4.90
‡VTMR [8] SegFormer-B3 1.38 1.42 1.44 1.72 3.55 5.53 3.26 4.82
‡TIA (Ours) SegFormer-B3 1.36 1.38 1.39 1.44 3.46 5.32 3.19 4.57
*SAM [15] ViT-B 1.56 1.68 1.35 1.91 6.53 10.38 4.81 6.44
‡InterFormer [12] ViT-B 1.42 1.50 1.73 3.11 3.69 6.13 4.53 5.56
‡SimpleClick [21] ViT-B 1.38 1.48 1.36 1.97 3.43 5.62 3.66 5.06
‡TIA (Ours) ViT-B 1.36 1.40 1.35 1.59 3.25 5.29 3.54 4.78
*SAM [15] ViT-L 1.72 1.91 1.37 2.01 5.74 9.32 5.04 6.48
‡InterFormer [12] ViT-L 1.33 1.40 1.70 2.78 3.56 5.89 4.12 5.08
‡SimpleClick [21] ViT-L 1.32 1.40 1.34 1.89 2.95 4.89 3.26 4.81
‡TIA (Ours) ViT-L 1.32 1.42 1.31 1.53 2.71 4.56 2.98 4.46

Table 1: Evaluation results on four datasets. Training dataset notations: “†” denotes
SBD [11] (8,498 images with 20,172 masks), “‡” denotes COCO+LVIS [9, 19] (118k images
with 1.2M masks), and “*” denotes SA-1B [15] (11M images with 1.1B masks).

B Method
Berkeley DAVIS

SPC
(s)NoDC20

mDIoU IoU@5 BIoU@5 ASSD@5 CME NoDC20
mDIoU IoU@5 BIoU@5 ASSD@5 CME

(%) (%) (%) (%) (%) (%) (%) (%)

V
iT

-B InterFormer 701 0.19 95.00 86.49 1.25 3.95 1756 0.45 88.13 80.92 8.58 9.63 0.32
SimpleClick 723 0.24 96.13 88.78 0.92 2.99 1685 0.79 88.96 80.65 7.94 8.99 0.03
TIA (Ours) 680 0.09 96.53 90.24 0.81 2.60 1478 0.26 90.64 82.97 6.89 6.29 0.04

V
iT

-L InterFormer 671 0.18 95.40 87.58 0.99 3.70 1955 0.56 87.90 81.91 7.95 9.23 0.60
SimpleClick 775 0.16 95.74 89.43 0.96 2.94 1547 0.52 89.25 83.22 6.47 8.81 0.07
TIA (Ours) 737 0.08 96.96 91.65 0.76 2.37 1493 0.32 91.36 84.85 6.28 5.83 0.10

Table 2: Comparisons of previous methods on the seven metrics.

1) achieved better segmentation results with fewer clicks, which outperformed other coun-
terparts on all four benchmarks; 2) exhibited less frequent and smaller average decrease in
accuracy when a new click deteriorated the segmentation results, demonstrating the stability
of our method; 3) attained higher peak accuracy within the constraint of no more than 20
clicks; 4) demonstrated a low computational budget.

The qualitative results of our method and previous methods are visualized in Figure 5.
Compared to the previous methods [4, 12, 21, 39], our method generated more accurate
segmentation results when provided with the same number of clicks. The contours of the
foreground objects in our segmentation masks closely align with those in the ground truth.
Please refer to the supplementary material for more visualization examples.

4.3 Ablation Study
Ablation study experiments were conducted to assess the effectiveness of each proposed
component. We reported the results on the DAVIS dataset because it covers challenging sce-
narios, including unseen categories, motion blur, and occlusions, and has more fine-grained
annotations. The results listed in Table 3 indicate that each component has contributed to
the performance improvement related to segmentation quality and stability. Among them,
MI had the most significant impact on the segmentation results, demonstrating that incor-

Citation
Citation
{Sofiiuk, Petrov, Barinova, and Konushin} 2020

Citation
Citation
{Chen, Zhao, Yu, Zhang, and Duan} 2021

Citation
Citation
{Lin, Duan, Zhang, Guo, and Cheng} 2022

Citation
Citation
{Wei, Zhang, and Yong} 2023

Citation
Citation
{Sofiiuk, Petrov, and Konushin} 2022

Citation
Citation
{Chen, Zhao, Zhang, Duan, Qi, and Zhao} 2022

Citation
Citation
{Wei, Zhang, and Yong} 2023

Citation
Citation
{Sofiiuk, Petrov, and Konushin} 2022

Citation
Citation
{Wei, Zhang, and Yong} 2023

Citation
Citation
{Zhou, Wang, Zhao, Li, Huang, Meng, and Zheng} 2023

Citation
Citation
{Chen, Zhao, Zhang, Duan, Qi, and Zhao} 2022

Citation
Citation
{Fang, Zhou, Chen, Su, Wu, and Li} 2024

Citation
Citation
{Chen, Zhao, Zhang, Duan, Qi, and Zhao} 2022

Citation
Citation
{Fang, Zhou, Chen, Su, Wu, and Li} 2024

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Dollar, and Girshick} 2023

Citation
Citation
{Huang, Yang, Sun, Zhang, Cao, Jiang, and Ji} 2023

Citation
Citation
{Liu, Xu, Bertasius, and Niethammer} 2023

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Dollar, and Girshick} 2023

Citation
Citation
{Huang, Yang, Sun, Zhang, Cao, Jiang, and Ji} 2023

Citation
Citation
{Liu, Xu, Bertasius, and Niethammer} 2023

Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011

Citation
Citation
{Gupta, Dollar, and Girshick} 2019

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Kirillov, Mintun, Ravi, Mao, Rolland, Gustafson, Xiao, Whitehead, Berg, Lo, Dollar, and Girshick} 2023

Citation
Citation
{Chen, Zhao, Zhang, Duan, Qi, and Zhao} 2022

Citation
Citation
{Huang, Yang, Sun, Zhang, Cao, Jiang, and Ji} 2023

Citation
Citation
{Liu, Xu, Bertasius, and Niethammer} 2023

Citation
Citation
{Zhou, Wang, Zhao, Li, Huang, Meng, and Zheng} 2023



10 WEI, ZHANG, YONG: INTERACTIVE IMAGE SEGMENTATION WITH TIA

Backbone IP MI DA NoC@90% IoU@5(%) BIoU@5(%) ASSD@5 NoDC20 mDIoU(%) CME(%)
ViT-B 5.06 88.96 80.65 7.94 1685 0.79 8.99
ViT-B ✓ ✓ 4.84 90.23 82.55 7.02 1502 0.32 6.74
ViT-B ✓ ✓ 4.93 89.19 81.24 7.58 1598 0.41 7.44
ViT-B ✓ ✓ 4.88 89.37 81.69 7.28 1526 0.49 7.39
ViT-B ✓ ✓ ✓ 4.78 90.64 82.97 6.89 1478 0.26 6.29
ViT-L 4.81 89.25 83.22 6.47 1547 0.52 8.81
ViT-L ✓ ✓ 4.54 90.99 84.63 6.34 1501 0.34 6.29
ViT-L ✓ ✓ 4.67 89.86 83.87 6.39 1547 0.45 6.97
ViT-L ✓ ✓ 4.63 90.56 84.25 6.37 1532 0.36 6.53
ViT-L ✓ ✓ ✓ 4.46 91.36 84.85 6.28 1493 0.32 5.83

Table 3: An ablation study for the core components on the DAVIS dataset.

Image Ground TruthFocalClickGPCIS InterFormer SimpleClick TIA (Ours)

NoC=1
IoU= 36.57%

NoC=1
IoU=17.85%

NoC=1
IoU=22.52%

NoC=1
IoU=19.91%

NoC=1
IoU=90.11

NoC=1
IoU=60.44%

NoC=1
IoU=62.21%

NoC=1
IoU=54.20%

NoC=1
IoU=57.30%

NoC=1
IoU=55.95%

NoC=10
IoU=77.22%

NoC=10
IoU=77.70%

NoC=10
IoU=63.64%

NoC=10
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Image Ground Truth Image Ground Truth

Figure 5: Qualitative comparisons of GPCIS [39], FocalClick [4], InterFormer [12], Sim-
pleClick [21], and our method.

porating temporal information into the current state helps improve the network’s ability to
understand the foreground and background. Refer to the supplementary material for more
ablation study results.

5 Conclusion
To mitigate accuracy fluctuations and minimize constrained minimal errors for interactive
image segmentation, this paper leverages the concept of the PID control and introduces the
TIA method. TIA enhances the dominant role of a new click by propagating the correction
intention globally. It also leverages past round’s feature descriptors to enhance the network’s
understanding of foreground and background, and perceives the trend of segmentation results
changes to improve prediction and correction capabilities of the network. By incorporating
past, current, and future information in multi-round interactions, the network can quickly
respond and refine errors accurately. Experimental results with four different backbones on
four datasets demonstrate that TIA effectively reduces user annotations, enhances segmenta-
tion quality and stability, and exhibits strong generalization capabilities.
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