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A Lie Group Notations

In this section, we explain the notation used throughout this paper as well as the required
preliminaries. Matrices are capitalized in bold, such as in X, and vectors are in lower case
bold type, such as in x. Vectors are column-wise and 1 : n means the integers from 1 to
n. vec(x1, . . . ,xn) denotes a vector such as x constructed by stacking xi, ∀ i ∈ {1 : n}. An
alphabet such as X denotes a set. The Euclidean norm is shown by ‖·‖. ‖e‖2

Σ
, eTΣ

−1e.
The n-by-n identity matrix is denoted by In. 0n denotes the vector of zeros with dimensions
n.

Thorough details of the covered topics in this section are available in [1, 13, 30]. The
general linear group of degree n, denoted by GLn(R), is the set of all n×n nonsingular real
matrices, where the group binary operation is the ordinary matrix multiplication. The 3D
special orthogonal group, denoted by

SO(3) = {R ∈ GL3(R)|RRT = I3,detR =+1},

is the rotation group on R3. The 3D special Euclidean group, denoted by

SE(3) = {T =

[
R p
0T3 1

]
∈ GL4(R)|R ∈ SO(3),p ∈ R3},

is the group of rigid transformations on R3. The Lie algebra (tangent space at the identity
together with Lie bracket) of SO(3), denoted by so(3), is the set of 3× 3 skew-symmetric

matrices such that for any ω , vec(ω1,ω2,ω3) ∈R3: ω∧ ,

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 and (ω∧)∨ =

ω . The Lie algebra of SE(3), denoted by se(3), can be identified by 4× 4 matrices such

that for any ω,v ∈ R3 and ξ , vec(ω,v) ∈ R6: ξ
∧ ,

[
ω∧ v
0T3 0

]
. The exponential map exp :

se(3)→ SE(3) can be used to map a member of se(3) around a neighborhood of zero to a
member of SE(3) around a neighborhood of the identity. The logarithm map is the inverse,
i.e. log : SE(3)→ se(3), and exp(log(T)) = T. Now we can define the difference between a
transformation T ∈ SE(3) and its estimate with a small perturbation T̂ ∈ SE(3) as [4, 13]:

ε
∧ = log(T̂T−1)

where ε∧ ∈ se(3). To define the norm of the error term, we exploit the fact that se(3) is
isomorphic to R6, i.e. ε∧ 7→ ε ∈ R6 using the ∨ operator. Thus ‖ε‖ = ‖log(T̂T−1)

∨‖, and
we define ‖ε‖2

Σ
, ε>Σ

−1
ε .

In optimization problem over a Lie group such as SE(3), the incremental term lives in
the tangent space, and a retraction that maps it onto the Lie group is required [1]. For SE(3),
the exponential map can serve as this retraction, and we solve the optimization problem by
iteratively lifting (logarithm map) the cost function to the tangent space, solving the repa-
rameterized problem, and then mapping the updated solution back to the original space using
the retraction. For this work, we use the open source library Ceres Solver [2]. Using its local
parametrizations, we can solve the nonlinear least squares problem by going to and from the
tangent space of SE(3).
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Table 3: Parameters used for each algorithm, similar values were chosen when possible,
with the exception of IPDA which has a slightly different framework, for which we stayed
close to the parameters in the authors implementation [17].

Parameters Semantic ICP GICP-SE(3) GICP IPDA

Convergence Threshold ε 1e−5 1e−5 1e−5 1e−3
Outer Max Iterations 50 50 50 50
Inner Max Iterations 200 200 200 100
Solver Backend Ceres Ceres PCL Ceres
Solver Algorithm LM LM BFGS LM
Jacobian Analytical Analytical Analytical Auto Diff
Parameter Representation SE(3) SE(3) Euler Angles×R3 SE(3)
Number of Threads 8 8 1 8
Distribution NN 20 20 20 NA
EM NN 4 NA NA 4
NN Dist. Threshold NA NA 1.5 m 1.5 m
Cauchy Loss α 2.0 2.0 NA NA

Table 4: Dilation CNN performance measure on the KITTI Odomentry Dataset

Global Acc Class Average Acc mIoU Inference Time (ms/image)

Dilation CNN 0.9738 0.9242 0.8482 214

B Optimization
This section will present the specifics of our evaluation, including parameters used by each
algorithm and the hardware they were run on. Table 3 lists the parameters of each algorithm
used. Notable difference includes the use of Ceres Solver’s automatic differentiation by
IPDA [17]. The experiments were run with version 1.13 of Ceres Solver, 3.3.4 of the Eigen
matrix library, and version 1.8.1 of the Point Cloud Library. Timing results are presented on
a computer with an Intel Core i7-3770 CPU, Nvidia Titan X (Pascal) GPU, and 32 GB of
RAM.

C Dataset Processing

C.1 Kitti Visual Odometry Dataset
Disparity maps are created by the LIBELAS algorithm presented by Geiger et al. [19] using
the rectified stereo images. For segmentation results, we used Dilation CNN [45] with a
model trained on the KITTI dataset. Table 4 shows the statistics of the CNN on the dataset.
We ran our evaluation on sequence 5 of the dataset. For the results presented, we calculated a
trajectory with each algorithm by aligning every third point cloud. We then compared these
relative transformations to the ground truth trajectories provided in the dataset.

To model p(sk|X , ik), as in (10), we fit a generalized Bernouli distribution to the same
NN used to fit the Guassian residual distribution. That gives a distribution over CNN labels,
to get the distribution over the true semantic class, we take the vector-matrix product of that
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Table 5: DeepLab-ResNet performance measure on the SceneNet RGBD Dataset train_0

Global Acc Class Average Acc mIoU Inference Time (ms/image)

DeepLab-ResNet 0.8810 0.8453 0.7444 162

distribution with the normalized confusion matrix collected on the training data. That gives
us another vector that is the generalized Bernouli distribution of true semantic class in that
area.

C.2 SceneNet RGBD
Evaluation was performed on the validation portion of the dataset. The dataset provides
ground-truth depth, for evaluation we added independent Gaussian noise to each depth mea-
surement nDepth ∼N (0,(0.04m)2). Four trajectories were used (29, 223, 530, and 784).

DeepLab system re-purposes image classification networks for semantic segmentation by
applying atrous convolution with upsampling filters, and yields significant improvement over
its baselines. We chose DeepLab-ResNet, which is built on a re-purposed ResNet-101 [23],
as the framework for semantic inference on SceneNet RGBD dataset. We initialized the
model with weights pre-trained on MS-COCO dataset [25], and fine-tuned it on the first
training set (train_0) of the SceneNet RGBD dataset which includes 300000 images. The
semantic annotations are obtained by mapping instance labels given in SceneNet RGBD to
NYUv2 13 class semantic labels [16].

The network was trained using the standard stochastic gradient descent algorithm and
the “poly" learning rate policy with the base learning rate set to 0.00025 and power to 0.9.
Momentum and weight decay are set to 0.9 and 0.0005 respectively. We used a mini-batch
size of 10, and trained the network for a total of 150K iterations for 3 days on an Nvidia
TITAN X (Pascal). The performance of the network is shown in Table 5. For this network
we modeled p(sk|X , ik) similarly to how we did for sub-appendix C.1

D Kitti Visual Odometry Extended Results
Figure 5 shows the qualitative results of running Semantic ICP and GICP on a series of
KITTI point clouds and then projecting them into a common reference frame. It shows that
misalignment with GICP causes echos of objects, while Semantic ICP produces crisp point
clouds.

E SceneNet RGBD Dataset Extended Results
Figure 6 shows error distance of the various methods in CDF and box plots. It shows a tighter
grouping than was presented for the KITTI visual odometry dataset, but with Semantic ICP
showing improvement over GICP and GICP-SE(3). Like the mean error metric, these plots
are affected by the long tail of error values present in this data.
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Building Vegetation Car Road Fence Sidewalk Pole

Figure 5: Sequential point clouds aligned using Semantic ICP on the right and GICP on the
left. The top row shows the source image from the KITTI visual odometry dataset. The sec-
ond row shows the inferred semantic labels produced using the Dilation CNN. The image on
the left is the point clouds transformed by the estimated Semantic ICP transformations, with
the camera positions marked in Cyan. The right are by the estimated GICP transformations
with the camera positions marked in orange. The repeated object on the right side of the
roadway are artifacts of poor alignment by GICP.

Figure 6: Box plots and cumulative distribution functions for the SceneNet RGBD dataset.
There is a long tail on the errors for all methods for this dataset. The limited field of view
and close-in objects led to high angle error. The CDFs are cut at 80% of the data to make the
difference more clear but all data is visible in the box plots.


