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1 Detailed procedure for updating θθθ i

1.1 Quadratic program with one constraint (QCQP1)
Consider the following quadratic optimization problem:

min
x∈Rd

‖x− z‖2
2,

subject to xT Qx+qT x+ r ≤ 0.
(1)

The fact that (1) contains only one quadratic constraint makes it tractable to obtain the global
solution for (1), regardless of the convexity of the objective function and the constraint. More
details about QCQP1 can be found in [1, 4]

Henceforth, we will show that the updating steps for θθθ i, i.e., solving the problem (12) in
the main paper, boils down to solving QCQP1 problems in the form of (1).

1.2 Solving for θθθ i

Recall from the main paper that updating θθθ i can be done by solving the problem

min
θθθ i

Φ( fi(θθθ i))−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2, (2)

which leads us to the three subproblems (13) and (14) in the main paper. In the following,
we detail the steps to solve the problem (13) by converting it into the QCQP1 form of (1).
The same approach can be applied to the problems (14). To make it easy for the reader to
follow, here we rewrite the problem (13) in the main paper:

min
θθθ i

−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2

subject to 0≤ fi(θθθ i)≤ ε,
(3)
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Consider first the objective function of the problem (3)

−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2, (4)

which can be rewritten as

(ρ−µ)‖θθθ i‖2−2ρ(θθθ −λλλ i)
T

θθθ i +ρ‖θθθ −λλλ i‖2. (5)

As we are minizing over θθθ i, the term ρ‖θθθ−λλλ i‖2 in (5) can safely be ignored. Consequently,
the cost function becomes

(ρ−µ)‖θθθ i‖2−2ρ(θθθ −λλλ i)
T

θθθ i. (6)

Here, by the design of the algorithm, ρ � µ . Therefore, minimizing (6) is equivalent to
minimizing

‖θθθ i‖2−2
ρ

ρ−µ
(θθθ −λλλ i)

T
θθθ i, (7)

which can be further manipulated to put it in the form of (1). Specifically, the objective
function for the optimization problem (3) becomes∥∥∥∥θθθ i−

ρ

ρ−µ
(θθθ −λλλ i)

∥∥∥∥2

2
. (8)

Next, we show how the constraint of the problem (3) can be put in the form of the quadratic
constraint in (1). The quadratic constraint in (3) can be written as

0≤ ‖aiθθθ +bi‖2

cT
i θθθ +di

≤ ε. (9)

As ‖aiθθθ +bi‖2 ≥ 0, (9) can be equivalently written as

‖aiθθθ +bi‖2
2 ≤ ε

2(cT
i θθθ +di)

2, (10)

which implies the condition that cT
i θθθ +di > 0.

It can easily be seen that (10) have the form of quadratic constraint (1), where

Q = aT
i,1ai,1 +aT

i,2ai,2− ε
2cicT

i ,

q = 2(bi,1aT
i,1 +bi,2aT

i,2− ε
2dici),

and
r = b2

i,1 +b2
i,2− ε

2d2
i ,

where ai,1 and ai,2 represents the first and second row of ai, respectively and, similarly, bi,1
and bi,2 are the first and second element of bi.

2 Convergence proof for the ADMM iterations
Our problem is a special case of a non-convex and non-smooth problem discussed in [5]. For
completeness, this section provides details for the convergence proof, which was outlined in
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Section 3.3 of the main paper. First, we introduce some new notations that will be used
throughout the proof.

To prevent clutter, collect all the auxiliary variables θθθ i into a vector x, and all the λλλ i into
λλλ . Specifically,

x = [θθθ T
1 θθθ

T
2 . . .θθθ

T
N ]

T , (11)

λλλ = [λλλ T
1 λλλ

T
2 . . .λλλ

T
N ]

T , (12)

Let B be the negative identity matrix of size Nd×Nd, where N is the number of measure-
ments and d is the dimensionality of θθθ .

B =−INd×Nd , (13)

Then, the set of coupling constraints can be written in the following form

x+Bθθθ = 0. (14)

Note that 0 is a vector of all zeros. Henceforth, let h(θθθ) = µN‖θθθ‖2
2, β = 2ρ , and γγγ = βλλλ

the augmented Lagrangian can be equivalently rewritten in the un-scaled ADMM form.

Lρ(x,θθθ ,γγγ) =
N

∑
i=1

(
Φ( fi(θθθ i))−µ‖θθθ i‖2)+h(θθθ)

+ γγγ
T (x+Bθθθ)+

β

2
‖x+Bθθθ‖2

2.

(15)

Note that (15) and the augmented Lagrangian formulated in the main paper (eq (8) in the
main paper) are equivalent [2]. Note also that from now on β is sometimes used to refer to
ρ in the main paper.

2.1 Monotonicity of the Lagrangian
First, it will be shown that with a sufficiently large β , after each ADMM iteration, the La-
grangian function is non-increasing.

Consider the (t +1)-th update cycle of the ADMM iterations. Let xt , θθθ
t , and γγγ t denote

the variables carried from the previous iterations and x+, θθθ
+, and γγγ+ denote the updated

variables, i.e.,x(t+1), θθθ
(t+1), and γγγ(t+1), respectively.

As the update steps for the auxiliary variables, which involves minimizing (15) with
respect to x, can be solved up to global optimality, the following inequality holds

Lρ(x+,θθθ t ,λλλ t)≤ Lρ(xt ,θθθ t ,λλλ t). (16)

After the original variable θθθ and the Lagrangian multipliers γγγ are updated, consider the
difference between the two Lagrangian functions

DL = Lρ(x+,θθθ t ,λλλ t)−Lρ(x+,θθθ+,λλλ+). (17)

In order to prove the monotonicity of the augmented Lagrangian (15), in the following we
prove that with a sufficiently large β , DL ≥ 0.

Since θθθ
+ minimizes Lρ(x+,θθθ t ,λλλ t) during the θθθ update step, by the optimality condi-

tion,
∇Lβ (θθθ

+) = ∇h(θθθ+)+BT
γγγ

t +BT
β (x++Bθθθ

+) = 0. (18)
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Note that with the changes of variable, γγγ is updated by

γγγ
+ = γγγ

t +β (x++Bθθθ
+). (19)

Thus, (18) becomes
BT

γγγ
+ =−∇h(θθθ+) (20)

After some manipulations, DL can be written as

DL = h(θθθ t)−h(θθθ+)+(γγγ+)T (Bθθθ
t −Bθθθ

+)

+
β

2
‖Bθθθ

+−Bθθθ‖2
2−

1
β
‖γγγ+− γγγ

t‖2
2

= h(θθθ t)−h(θθθ+)+(BT
γγγ
+)T (θθθ t −θθθ

+)

+
β

2
‖Bθθθ

+−Bθθθ‖2
2−

1
β
‖γγγ+− γγγ

t‖2
2

(21)

Using (20), (21) becomes

DL = h(θθθ t)−h(θθθ+)−∇h(θθθ+)T (θθθ t −θθθ
+)

+
β

2
‖Bθθθ

+−Bθθθ‖2
2−

1
β
‖γγγ+− γγγ

t‖2
2

(22)

Since γγγ+ ∈ Im(B), following [3, Lemma 2],

‖γγγ+− γγγ‖ ≤ ‖BT (γγγ+− γγγ)‖ ≤ ‖∇h(θθθ+)−∇h(θθθ t)‖ (23)

With the definition of h(θθθ), from (23), it follows that

‖γγγ+− γγγ‖ ≤C‖θθθ+−θθθ
t‖, (24)

with C = 2µN. Thus,

− 1
β
‖γγγ+− γγγ‖2

2 ≥−
C2

β
‖θθθ+−θθθ

t‖2
2. (25)

Furthermore, based on Taylor expansion of the function h(θθθ),

h(θθθ t)≥ h(θθθ+)+∇h(θθθ+)T (θθθ t −θθθ
+)

+(θθθ t −θθθ
+)T

∇
2h(θθθ+)(θθθ t −θθθ

+),
(26)

which leads to
h(θθθ t)−h(θθθ+)−∇h(θθθ+)T (θθθ t −θθθ

+)

≥C‖θθθ t −θθθ
+‖2

2.
(27)

By incorporating (22), (25) and (27), it can be deduced that

DL ≥ Nβ

2
‖θθθ+−θθθ‖2

2−
C
β
‖θθθ+−θθθ

t‖2
2 +C‖θθθ t −θθθ

+‖2
2

≥
(

Nβ

2
− C2

β
+C

)
‖θθθ t −θθθ

+‖2
2,

(28)
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which means if β is sufficiently large, DL ≥ 0. In other words, we have proved that, with a
sufficiently large β ,

Lρ(x+,θθθ+,λλλ+)≤ Lρ(x+,θθθ t ,λλλ t). (29)

From (16) and (29), it holds that

Lρ(x+,θθθ+,λλλ+)≤ Lρ(xt ,θθθ t ,λλλ t), (30)

or the augmented Lagrangian function (15) is non-increasing for a sufficiently large β .

2.2 Boundedness of the Lagrangian
As our algorithm is a special case of the non-smooth, non-convex optimization problem
discussed in [5]. Due to the fact that all the functions are coercive, it can be proved that
the Lagrangian is lower bounded for all t and converges as t → ∞ (see [5, Lemma 6.2]).
Therefore,

lim
t→∞
‖θθθ+−θθθ

t‖2 = 0,

which, due to (25), leads to
lim
t→∞
‖γγγ+− γγγ

t‖2 = 0.

Also, based on the update rule of γγγ

lim
t→∞
‖θθθ t

i−θθθ
t‖2 = 0, ∀i.

It then can be concluded that with a sufficiently large β , the ADMM iterations converge
to a stationary point (θθθ ∗i ,θθθ

∗,γγγ∗), such that

θθθ
∗ = θθθ

∗
1 = θθθ

∗
2 = . . .θθθ ∗N .
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