
Synthetic View Generation for Absolute
Pose Regression and Image Synthesis:
Supplementary material

Pulak Purkait1

pulak.cv@gmail.com

Cheng Zhao2

irobotcheng@gmail.com

Christopher Zach1

christopher.m.zach@gmail.com

1 Toshiba Research Europe Ltd.
Cambridge, UK

2 University of Birmingham
Birmingham, UK

Contents
1 The network architecture of proposed SPP-Net 1

2 Validation of Different Steps 2

3 More Visualizations 5

4 Pose Regression Varying network size 5

5 Architectures of the RGB image synthesis technique 5

6 More Results on RGB image synthesis 6

1 The network architecture of proposed SPP-Net
As shown in Figure 1, the proposed network consists of an array of CNN subnets, an ensem-
ble layer of max-pooling units at different scales and two fully connected layers followed
by the output pose regression layer. At each scale, a CNN feature descriptors is fed to the
ensemble layer of multiple maxpooling units [Fig. 1(b)]. A CNN consists of 4 convolution
layers of size 1× 1 of dimensionally D′s which are followed by relu activation and batch
normalization. Thus, the set of d1×d2, (D+5)-dimensional input descriptors is fed into the
CNNs at multiple scales, each of which produces feature map of size d1×d2×D′s. Note that
the number of feature descriptors is unaltered during the convolution layers. Experimentally
we have found that the chosen 1×1 convolutions with stride 1×1 performs better than larger
convolutions. In all of our experiments, we utilize SIFT descriptors of size D = 128 and the
dimension of the CNN feature map D′s at level s is chosen to be D′s = 512/22s.

Inspired by spatial pyramid pooling [2], in SPP-Net we concatenate the outputs of the
individual max-pooling layers before reaching the final fully connected regression layers.
We use parallel max-pooling layers at several resolutions: at the lowest level of the ensemble
layer has D′0 global max-pooling units (each taking d1×d2 inputs), and at the sth level it has
22s×D′s max-pooling units (with a receptive field of size d1/(2s)×d2/(2s)). The response

1

Citation
Citation
{He, Zhang, Ren, and Sun} 2014



CNNs SPP fc6 fc7

fc8

Rotation

Translation

4D

3D

3×512D
1024D 1024D

40D

32×32×133D

(a) Input: Sparse

32×32×128D 16
×

32
D

4
×

12
8D

1
×

51
2D

(b) 3× (4 layers of (c) Spatial Pyramid (d) Regression layers (d) Output:

32×32×32D

32×32×512D

Feature Descriptors 1×1 convolutions) max-pooling units Absolute Pose

Figure 1: Proposed SPP-Net for absolute pose regression takes sparse feature points as input
and predicts the absolute pose.

of all the max-pooling units are then concatenated to get a fixed length feature vector of size
∑s 22s×512/22s = 512×(s+1). In all of our experiments, we have chosen a fixed level s= 2
of max-pooling unites. Thus, the number of output feature channel of the ensemble layer is
D′ = 1536. The feature channels are then fed into two subsequent fully connected layers (fc6
and fc7 of Fig. 1) of size 1024. We also incorporate dropout strategy for the fully connected
layers with probability 0.5. The fully connected layers are then split into two separate parts,
each of dimension 40 to estimate 3-dimensional translation and 4-dimensional quaternion
separately.

The number of parameters and the operations used in different layers are demonstrated
in Table 1. A comparison among different architectures can also be found in Table 2.

2 Validation of Different Steps

We perform another experiment to validate different steps of the proposed augmentation,
where we generate three different sets of synthetic poses with increasing realistic adjustment
on each step of the synthetic image generation process. The first set of synthetic poses con-
tains no noise or outliers, the second set is generated with added noise, and the third set
is generated with added noise and outliers as described above. Note that all the networks
are evaluated on the original sparse test feature descriptors. We also evaluate PoseNet [3],
utilizing a tensorflow implementation available online 1, trained on the original training im-
ages for 800 epochs. The proposed SPP-Net, trained only on the training images, performs
analogously to PoseNet. However, with the added synthetic poses the performance improves
immensely with the realistic adjustments as shown in Figure 3. Note that since PoseNet uses
full image, it cannot easily benefit from augmentation.

An additional experiment is conducted to validate the architecture of SPP-Net. In this
experiment, the SPP-Net is evaluated with the following architecture settings:
• ConvNet: conventional feed forward network with convolution layers and max-pooling

layers are stacked one after another (same number of layers and parameters as SPP-Net)
acting on the sorted 2D array of keypoints.

1github.com/kentsommer/keras-posenet

2

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

https://github.com/kentsommer/keras-posenet


type / depth patch size / stride output #params # FLOPs

conv0/1 1×1/1 32×32×128 17K 17M
conv0/2 1×1/1 32×32×256 32.7K 32.7M
conv0/3 1×1/1 32×32×256 65.5K 65.5M
conv0/4 1×1/1 32×32×512 131K 131M

conv1/1 1×1/1 32×32×128 17K 17M
conv1/2 1×1/1 32×32×128 16.4K 16.4M
conv1/3 1×1/1 32×32×128 16.4K 16.4M
conv1/4 1×1/1 32×32×128 16.4K 16.4M

conv2/1 1×1/1 32×32×128 17K 17M
conv2/2 1×1/1 32×32×64 8.3K 8.3M
conv2/3 1×1/1 32×32×64 4.1K 4.1M
conv2/4 1×1/1 32×32×32 2K 2M

max-pool0/5 32×32/32 1×1×512 – –
max-pool1/5 16×16/16 2×2×128 – –
max-pool2/5 8×8/8 4×4×32 – –

fully-conv/6 – 1×1024 1.51M 1.51M
fully-conv/7 – 1×1024 1.04M 1.04M
fully-conv/8 – 1×40 82K 82K
fully-conv/8 – 1×40 82K 82K

pose T/9 – 1×3 0.1K 0.1K
pose R/9 – 1×4 0.1K 0.1K

≈ 3M 346.3M

Table 1: A detailed descriptions of the number of parameters and floating point operations
(FLOPs) utilized at different layers in the proposed SPP-Net.

Method #params #FLOPs

SPP-Net (Proposed) 3M 0.35B
Original PoseNet (GoogleNet) [3] 8.9M 1.6B
Baseline (ResNet50) [4, 5] 26.5M 3.8B
PoseNet LSTM [7] 9.0M 1.6B

Table 2: Comparison on the number of parameters and floating point operations (FLOPs).

• Single maxpooling: a single maxpooling layer at level 0,
• Multiple maxpooling: one maxpooling layer at level 2,
• SPP-Net: concatenate responses at three different levels.

In Figure 3, we display the results with the different choices of the architectures where we
observe best performance with SPP-Net. Note that no synthetic data used in this case.

3

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Laskar, Melekhov, Kalia, and Kannala} 2017

Citation
Citation
{Melekhov, Ylioinas, Kannala, and Rahtu} 2017

Citation
Citation
{Weyand, Kostrikov, and Philbin} 2016



0 0.2 0.4 0.6 0.8 1
Positional Error (m)

0

0.5

1

PoseNet

SPP-Net

SPP-Net

SPP-Net °

SPP-Net °

0 20 40 60

Angular Error (degree)

0

0.5

1

PoseNet

SPP-Net

SPP-Net

SPP-Net °

SPP-Net °

Figure 2: Left-Right: demonstrate our localization accuracy for both position and orientation
as a cumulative histogram of errors for the entire testing set. Where the baselines—Net∗:
trained with the training data only, Net′: trained with the clean synthetic data, Net′◦: trained
with the synthetic data under realistic noise, Net′◦•: trained with the synthetic data under
realistic noise and outliers.

0 0.5 1 1.5
Positional Error (m)

0

0.5

1

Convnet
Single-maxpool
Multiple-maxpool
SPP-Net

0 10 20 30 40 50
Angular Error (degree)

0

0.5

1

Convnet
Single-maxpool
Multiple-maxpool
SPP-Net

fc fc fc fc

(a) ConvNet (b) Single-maxpool (c) Multiple-maxpool (d) SPP-Net

Figure 3: Top row: the results with different architecture settings–ConvNet is a conventional
feed forward network acting on the sorted sparse descriptors. Single-maxpool and Multiple-
maxpool are when only a single maxpooling unit at level-0 and multiple maxpooling at
level-2 is used. We observe better performance when we combine those in SPP-Net. Bottom
row: 1D representation of different architectures where the convolutions and maxpooling
unites are represented by horizontal lines and triangles respectively. The global max-pooling
is colored by red and other maxpooling unites are colored by blue.

4



SPP-Net (0.25×) SPP-Net SPP-Net (4×)

Chess 0.15m, 4.89
◦

0.12m, 4.42
◦

0.10m, 3.36
◦

Fire 0.28m, 12.4
◦

0.22m, 8.84
◦

0.21m, 8.35
◦

Heads 0.14m, 10.7
◦

0.11m, 8.33
◦

0.11m, 8.06
◦

Office 0.19m, 6.15
◦

0.16m, 4.99
◦

0.13m, 4.07
◦

Pumpkin 0.34m, 8.47
◦

0.21m, 4.89
◦

0.20m, 5.35
◦

Red Kitchen 0.26m, 5.16
◦

0.21m, 4.76
◦

0.22m, 5.29
◦

Stairs 0.25m, 7.38
◦

0.22m, 7.17
◦

0.20m, 7.25
◦

Table 3: Evaluation of SPP-Net with varying number of parameters on seven Scenes datasets.

3 More Visualizations
A video (chess.mov2) is uploaded that visualizes the “Chess” sequence with overlaid
features. The relevance of features is determined and visualized as in Fig. 6 in the main text.
A relatively small and also temporally coherent set of salient features is chosen by SPP-Net
for pose estimation.

4 Pose Regression Varying network size
This experiments aims to determine the sensitivity of the SPP-Net architecture to the number
of network parameters. We consider two modifications for the network size:
• half the number of feature channels used in convolutional and fully connected layers of

SPP-Net,
• conversely, double the number of all feature channels and channels in the fully connected

layers.
As a result we have about one fourth and 4× number of parameters, respectively, compared
to our standard SPP-Net. The above networks are trained on the augmented poses of the
seven Scenes datasets. The results are displayed in Table 3 and indicate, that the performance
of the smaller network is degrading relatively gracefully, whereas the larger network offers
insignificant gains (and it seems to show some signs of over-fitting).

In Table 4, we display the results on Cambridge Landmark Datasets [3] where we observe
similar performance as above. It improves the performance with the size of the network for
most of the sequence, except the sequence “Shop Facade”. Again, we believe that in this
case the larger network starts to overfit on this smaller dataset.

5 Architectures of the RGB image synthesis technique
The proposed architecture is displayed in Fig. 4. The generator has an U-Net architecture
consists of a number of skip connections. Note that our input is a sparse descriptor of size
32× 32× 133D and the output is a RGB image of size 256× 256× 3. Thus the skip con-
nections are performed with feature descriptors of sizes 16× 16 8× 8 and 4× 4 only. The

2https://youtu.be/Fuv18OMaTnk

5

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

https://youtu.be/Fuv18OMaTnk


SPP-Net (0.25×) SPP-Net SPP-Net (4×)

Great Court 7.58m, 5.91
◦

5.42m, 2.84
◦

5.48m, 2.77
◦

King’s College 1.41m, 2.02
◦

0.74m, 0.96
◦

0.83m, 1.01
◦

Old Hosp. 2.06m, 3.91
◦

2.18m, 3.92
◦

1.83m, 3.25
◦

Shop Facade 0.87m, 3.36
◦

0.59m, 2.53
◦

0.64m, 3.05
◦

StMary’s Church 2.17m, 5.61
◦

1.44m, 3.31
◦

1.42m, 3.28
◦

Street 33.9m, 31.2
◦

24.5m, 23.8
◦

17.5m, 20.2
◦

Table 4: Evaluation of SPP-Net with varying number of parameters on Cambridge Landmark
datasets [3].

(a) Generator (G) network used for `2 [1].

RGBG

fakeD

RGB

realD

(b) Training a conditional GAN to map sparse feature descriptors to RGB image.

Figure 4: Proposed architectures for RGB image synthesis.

discriminaor network takes RGB image and sparse descripors both as input followed by sep-
arate convolution layers. The stream pairs are concatenated just before the last layer. The
networks are trained simultaniously from scratch.

6 More Results on RGB image synthesis

More results on RGB image synthesis are displayed in Fig. 5 and Fig. 6. We observe that our
GAN based RGB image generation produces consistent results. Note that we have displayed
the consecutive frames—which are not some cherry picked examples.

6

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Dosovitskiy and Brox} 2016



(a) 1st (b) 100th (c) 200th (d) 300th (e) 400th (f) 500th (g) 600th (h) 700th

A
F

[8
]

` 2
[1

]
G

A
N

[O
ur

s]
O

ri
gi

na
l

Figure 5: RGB images synthesized by different methods at the test poses of the chess im-
age sequence of 7-Scenes Dataset [6]. The indices of the images of the test sequence are
mentioned in the top of the figure.

(a) 1st (b) 25th (c) 50th (d) 75th (e) 100th (f) 125th (g) 150th (h) 175th

A
F

[8
]

` 2
[1

]
G

A
N

[O
ur

s]
O

ri
gi

na
l

Figure 6: RGB images synthesized by different methods at the test poses of the “StMary’s
Church” image sequence of Cambridge Dataset [3]. The indices of the images of the test
sequence are mentioned in the top of the figure.

7

Citation
Citation
{Zhou, Tulsiani, Sun, Malik, and Efros} 2016

Citation
Citation
{Dosovitskiy and Brox} 2016

Citation
Citation
{Shotton, Glocker, Zach, Izadi, Criminisi, and Fitzgibbon} 2013

Citation
Citation
{Zhou, Tulsiani, Sun, Malik, and Efros} 2016

Citation
Citation
{Dosovitskiy and Brox} 2016

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015



References
[1] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolu-

tional networks. In Proc. CVPR, pages 4829–4837, 2016.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In Proc. ECCV, pages 346–361.
Springer, 2014.

[3] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network
for real-time 6-dof camera relocalization. In Proc. ICCV, pages 2938–2946, 2015.

[4] Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho Kannala. Camera relocal-
ization by computing pairwise relative poses using convolutional neural network. Proc.
ICCV Workshops, 2017.

[5] Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa Rahtu. Image-based localiza-
tion using hourglass networks. Proc. ICCV Workshops, 2017.

[6] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and
Andrew Fitzgibbon. Scene coordinate regression forests for camera relocalization in
rgb-d images. In Proc. CVPR, pages 2930–2937, 2013.

[7] Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with con-
volutional neural networks. In Proc. ECCV, pages 37–55. Springer, 2016.

[8] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View
synthesis by appearance flow. In Proc. ECCV, pages 286–301. Springer, 2016.

8


