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1 Overview of the proposed approach

Algorithm 1: Dynamic super-ray algorithm

Data: Input light field frame LF/

Result: Super-ray assignments A/

if f == first frame then

| Compute A as in [1]

else
Move centroids with (8¥,8¢) (Sec. 4.1)
Delete and create centroids (Sec. 4.2)

for 5 iterations do
Do the assignment step Eq. 1
Do the update step (Sec 4.3)

2 Full cost volume computation for scene flow

For two consecutive light field frames f and f + 1, one could estimate the scene flow (8%, 8%)
at the centroid ray r{ = (Sc,Xc) as

(87, 5) = argmin Y A L) W
6% ,5' s/

3 d
where r/ ™ = (s, x. + 8%), /T = (s’,Pj"M (xc+ 6%)) and A, the color distance
between two patches of size B centered at rg 1 and réf +
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3 Quantitative Evaluation Detailed Results

Tab. 4 table summarizes the results we obtain on the Monka dataset in [3], using the different
qualitative metrics in [2]:

e Achievable segmentation accuracy (ASA) : segmentation accuracy obtained when ev-
ery super-pixel is assigned the optimal ground truth label.

e Boundary recall (BR) : ratio of superpixel boundary overlapping a real object bound-
ary.

e Under-segmentation error (we use the Corrected Under-Segmentation error (CUE) as
proposed in [4]) : each superpixel is assigned to the ground-truth label with biggest
overlap. The CUE is the ratio of pixels that lies inside of the superpixel but outside of
its inside ground truth label.

e Temporal consistency (TC) : using the ground truth optical flow &, ratio of corre-
sponding pixels that lies inside the same super-pixels from the two sets of assignments
A’ and A7+ in the light field reference view I.

= Y A(A (0,47 (x4 80)

TC(A) =
W=k

where A the Kronecker delta function.
We compare :

o The static super-rays in [1] (SR), put into correspondence such that TC is maximized
(using the ground truth flow) between a reference frame (central) and the others.

e The proposed approach (DSR)

The test are carried out using the ground truth label, optical flow and disparity on the fist
50 frames of each dataset. Note that we removed the flowerstorm and funnyworld camera2
sequences because the camera and objects movements where too unreasonable. The best
result for each metric is in bold typeface.

Note that for some sequences, the movement of the camera is so violent that super-rays
are not deleted/created fast enough to cover the dis-occluded areas (eg. in eating camera2),
resulting in loss of temporal consistency. The static super-ray case do not have this issue
because the ground truth is used to establish the correspondences, so it is numerically advan-
taged in that scenario.

4 Qualitative Evaluation Parameters

As hyper-parameters, fixed for all the datasets, we use a down-sampling factor of 2 and a flow
window of 30 pixels for the computation of the deep matches. The 8¢ search range is limited
to 1/10 of the depth search range, given for each dataset. The depth block size is fixed to
11 x 11 pixels. The compactness parameter A is fixed to 0.5 and 7 and p are fixed to 1.9 and
0.4 respectively. We generated 1500 super-rays for the Technicolor dataset and 2000 for the
Fraunhofer dataset. These number of super-rays offer a good trade-off between segmentation
accuracy and super-ray tolerance to occlusions (as discussed in [1]) for each of the datasets.
Our dynamic super-rays are computed in the whole sequences without fragmenting them.
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Table 1: Qualitative results on the Monka dataset [3]

ASA BR CUE TC

SR DSR SR DSR SR DSR SR DSR
treeflight x2 0.9114 | 0.9365 | 0.8485 | 0.9471 | 0.1608 | 0.1165 | 0.6778 | 0.8552
a rain of stones x2 0.9509 | 0.9534 | 0.8267 | 0.8653 | 0.0913 | 0.0651 | 0.8403 | 0.8307
eating camera2 x2 0.9180 | 0.9345 | 0.7421 | 0.7679 | 0.1324 | 0.0748 | 0.6591 | 0.8321
eating naked camera2 x2 | 0.9188 | 0.9367 | 0.7409 | 0.7687 | 0.1307 | 0.0751 | 0.6600 | 0.8379
eating x2 0.8546 | 0.7928 | 0.7711 | 0.7155 | 0.1428 | 0.0928 | 0.8019 | 0.6492
family x2 0.8930 | 0.9313 | 0.8534 | 0.9374 | 0.1762 | 0.1006 | 0.9711 | 0.9444
funnyworld augmented0 x2 | 0.9251 | 0.9439 | 0.7726 | 0.7975 | 0.1325 | 0.0847 | 0.4415 | 0.8372
funnyworld augmentedl x2 | 0.9490 | 0.9633 | 0.7769 | 0.8686 | 0.0707 | 0.0391 | 0.7601 | 0.9254
funnyworld x2 0.9287 | 0.9537 | 0.7543 | 0.8761 | 0.1127 | 0.0661 | 0.7118 | 0.9121
lonetree augmented(O x2 0.9729 | 0.9811 | 0.8321 | 0.8651 | 0.0536 | 0.0278 | 0.7302 | 0.9147
lonetree augmented1 x2 0.9689 | 0.9721 | 0.8330 | 0.8116 | 0.0611 | 0.0506 | 0.5152 | 0.7164
lonetree difftex x2 0.9746 | 0.9838 | 0.9101 | 0.9534 | 0.0403 | 0.0139 | 0.8945 | 0.9372
lonetree difftex2 x2 0.9759 | 0.9823 | 0.8958 | 0.9513 | 0.0390 | 0.0168 | 0.9145 | 0.9511
lonetree winter x2 0.9723 | 0.9798 | 0.8817 | 0.9464 | 0.0453 | 0.0213 | 0.9245 | 0.9551
lonetree x2 0.9750 | 0.9827 | 0.8974 | 0.9540 | 0.0402 | 0.0170 | 0.9238 | 0.9506
top view x2 0.9255 | 0.9622 | 0.8358 | 0.9522 | 0.1420 | 0.0586 | 0.9723 | 0.9537
treeflight augmented0 x2 | 0.9900 | 0.9865 | 0.8804 | 0.8662 | 0.0185 | 0.0187 | 0.6276 | 0.9291
treeflight augmented1 x2 | 0.9237 | 0.9223 | 0.7595 | 0.9061 | 0.1478 | 0.1219 | 0.5673 | 0.7744
Average 0.9405 | 0.9499 | 0.8229 | 0.8750 | 0.0965 | 0.0590 | 0.7552 | 0.8726
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5 Qualitative Evaluation Videos

The attached MP4 videos only contains compressed results for the two datasets presented in
the paper.
The following website channel contains the supplemental videos, offering several means
of dynamic super-rays visualization.
https://www.irisa.fr/temics/demos/DynamicSuperrays/index.html
Alternatively, the videos are hosted on YouTube.
https://www.youtube.com/channel /UCHFkXPUS1iV3UFx1ABRmQkNA/videos
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